

table of contents

May 1998,
Volume 49, Issue 2

Articles

An API for Interfacing Interactive 3D
Applications to High-Speed Graphics Hardware
by Kevin T. Lefebvre and John M. Brown

An Overview of the HP OpenGL® Software
Architecture
by Kevin T. Lefebvre, Robert J. Casey, Michael J.
Phelps, Courtney D. Goeltzenleuchter, and Donley B.
Hoffman

The DirectModel Toolkit: Meeting the 3D
Graphics Needs of Technical Applications
by Brian E. Cripe and Thomas A. Gaskins

An Overview of the VISUALIZE fx Graphics
Accelerator Hardware
by Noel D. Scott, Daniel M. Olsen, and Ethan W.
Gannett

HP Kayak: A PC Workstation with Advanced
Graphics Performance
by Ross A. Cunniff

Concurrent Engineering in OpenGL® Product
Development
by Robert J. Casey and L. Leonard Lindstone

Advanced Display Technologies on HP-UX
Workstations
by Todd M. Spencer, Paul M. Anderson, and David J.
Sweetser

Delivering PCI in HP B-Class and C-Class
Workstations: A Case Study in the Challenges
of Interfacing with Industry Standards
by Ric L. Lewis, Erin A. Handgen, Nicholas J.
Ingegneri, and Glen T. Robinson

javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/prodserv.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/prodserv.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/support.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/support.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/solutions.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/solutions.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/howtobuy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/howtobuy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://www.hp.com/go/search-us-eng/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hp.com/go/search-us-eng/'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/contact.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/contact.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/covmay98.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/ahead-0598.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/past.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/journal.html
javascript:if(confirm('http://www.hpl.hp.com/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/'
javascript:if(confirm('http://www.hpl.hp.com/about/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/'
javascript:if(confirm('http://www.hpl.hp.com/research/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/research/'
javascript:if(confirm('http://www.hpl.hp.com/news/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/news/'
javascript:if(confirm('http://www.hpl.hp.com/jobs/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/jobs/'
javascript:if(confirm('http://www.hpl.hp.com/techreports/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/techreports/'
javascript:if(confirm('http://www.hpl.hp.com/about/sites.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/sites.html'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a8.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a12.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a13.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a8.htm

Linking Enterprise Business Systems to the
Factory Floor
by Kenn S. Jennyc

Knowledge Harvesting, Articulation, and
Delivery
by Kemal A. Delic and Dominique Lahaix

A Theoretical Derivation of Relationships
between Forecast Errors
by Jerry Z. Shan

Strengthening Software Quality Assurance
by Mutsuhiko Asada and Pong Mang Yan

A Compiler for HP VEE
by Steven Greenbaum and Stanley Jefferson

file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a12.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/98may/may98a13.htm
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/privacy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/privacy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/termsofuse.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/termsofuse.htm'

6 May 1998 • The Hewlett-Packard JournalArticle 1 • 1998 Hewlett Packard Company

An API for Interfacing Interactive 3D
Applications to High-Speed Graphics
Hardware

The OpenGL specification defines a software interface that can be

implemented on a wide range of graphics devices ranging from simple

frame buffers to fully hardware-accelerated geometry processors.

OpenGL is a specification for a software-to-hardware application

programming interface, or API, that defines operations needed to produce

interactive 3D applications. It is designed to be used on a wide range of

graphics devices, including simple frame buffers and hardware-accelerated

geometry processor systems. With design goals of efficiency and multiple

platform support, certain functions, such as windowing and input support,

have not been defined in OpenGL. These unsupported functions are included

in support libraries outside the core OpenGL definition.

OpenGL is targeted for use on a range of new graphics devices for both UNIX -

based and Windows NT-based operating system platforms. These systems

differ in both capabilities and performance.

Early in the OpenGL program at HP, industry partnerships were established

between the OpenGL R&D labs and key independent software vendors (ISVs)

to ensure a high-quality, high-performance product that met the needs of

these ISVs. These partnerships were also used to assist the ISVs in moving to

the HP OpenGL product (see “The Fast Break Program” on page 8).

The various OpenGL articles in this issue describe the design philosophy and

the implementation of the HP version of OpenGL and other graphics products

associated with OpenGL.

�
�� �� �
�
	��

���� �� �����

�
�� �� �
�
	��

A senior engineer in the

graphics products labora-

tory at the HP Workstation

Systems Division, Kevin Lefebvre is responsi-

ble for the OpenGL architecture and its imple-

mentation and delivery. He came to HP in 1986

from the Apollo Systems Division. He has a BS

degree in mathematics (1976) from Carnegie-

Mellon University. He was born in Pittsfield,

Massachusetts, is married and has two chil-

dren. His hobbies include running, biking, and

skiing.

���� �� �����

John Brown is a senior

engineer in the graphics

products laboratory of the

HP Workstation Systems Division. He is respon-

sible for graphics application performance.

John came to HP in 1988. He holds a BSEE

degree (1980) from the University of Kentucky.

7 May 1998 • The Hewlett-Packard JournalArticle 1 • 1998 Hewlett Packard Company

History of OpenGL

OpenGL is a successor to Iris GL, a graphics library devel-
oped by Silicon Graphics International (SGI). Major
changes have been made to the Iris GL specification in
defining OpenGL. These changes have been aimed at
making OpenGL a cleaner, more extensible architecture.

With the goal of creating a single open graphics standard,
the OpenGL Architecture Review Board (ARB) was formed
to define the specification and promote OpenGL in terms
of ISV use and availability of vendor implementations.
The original ARB members were SGI, Intel, Microsoft ,
Digital Equipment Corporation, and IBM. Evans & Suther-
land, Intergraph, Sun, and HP were added more recently.
For more information on current ARB members, OpenGL
licensees, frequently-asked questions, and other
ARB related information, visit the OpenGL web site at
http://www.opengl.org.

The initial effort of the ARB was the 1.0 specification of
OpenGL, which became available in 1992. Along with
this specification was a series of conformance tests that
licensees needed to pass before an implementation could
be called OpenGL. Since then the ARB has added new
features and released a 1.1 specification in 1995 (the HP
implementation is based on 1.1). Work is currently being
done to define a 1.2 revision of the specification.

HP Involvement in OpenGL

HP became an OpenGL licensee in 1995. We had the goal
of delivering a native implementation of OpenGL that
would run on hardware and software that would provide
OpenGL performance leadership.

Shortly after licensing OpenGL, we established a relation-
ship with a third party to provide an OpenGL implementa-
tion on our existing set of graphics hardware while we
worked on a new generation of hardware that was better
suited for OpenGL semantics. The OpenGL provided by
the third party used the underlying graphics hardware
acceleration where possible. However, it could not be
considered an accelerated implementation of OpenGL
because of features lacking in the hardware.

In August of 1996, we demonstrated our first native imple-
mentation of OpenGL at Siggraph 96. This implementation
was fully functional and represented the software that

would be shipped with the future OpenGL-based hard-
ware. The implementation supported various device driv-
ers including a software-based renderer. The OpenGL de-
velopment effort culminated in the announcement and
delivery of OpenGL-based systems in the fall of 1997.

Software Implementation

In our implementation, we focused on the hardware’s abil-
ity to accelerate major portions of the rendering pipeline.
For the software, we focused on its ability to ensure that
the hardware could run at full performance. A fast graphics
accelerator is not needed if the driving software cannot
keep the hardware busy. The resulting software architec-
ture and implementation was designed from a system
viewpoint. Decisions were based on system requirements
to avoid overoptimizing each individual component and
still not achieve the desired results. An overview of the
HP OpenGL software architecture is provided in the ar-
ticle on page 9. Another software-related issue is provided
in the article on page 35, which discusses issues associ-
ated with porting a UNIX-based OpenGL implementation
to Windows NT.

Hardware Systems

The new graphics systems are able to support OpenGL,
Starbase, PHIGS, and PEX rendering semantics in hard-
ware. Being able to support the OpenGL API means that
there is hardware support for accelerating the full feature
set of OpenGL instead of just having a simple frame buffer
in which all or most of the OpenGL features are imple-
mented in software. These systems are the VISUALIZE fx2,
VISUALIZE fx4, and VISUALIZE fx6 graphics accelerator
products. These systems differ in the amount of graphics
acceleration they provide, the number of image planes,
and the optional OpenGL features they provide. In addi-
tion to the base graphics boards, a texture mapping op-
tion is available for the fx4 and fx6 accelerators. The
article on page 28 provides an overview of the new
graphics hardware developed to support OpenGL.

Engineering Process

To meet the required delivery dates of OpenGL with a
high level of confidence and quality, we used a new pro-
cess to compress the time between first silicon and manu-
facturing release. The article on page 41 describes the

http://www.opengl.org

8 May 1998 • The Hewlett-Packard JournalArticle 1 • 1998 Hewlett Packard Company

The Fast-Break Program

In basketball, a rapid offensive transition is called a fast-
break. The fast-break program is about the transition game
for OpenGL on HP systems. A key part of the HP transition to
OpenGL is applications, because applications enable volume
shipments of systems. Having the right applications is neces-
sary for a successful OpenGL product, but it is also important
that the applications run with outstanding performance and
reliability. Fast-break is about both aspects—getting the appli-
cations on HP systems and ensuring that they have outstanding
performance and reliability.

Fast-break began by working with application developers in
the early stages of the OpenGL program to understand their
requirements for the HP OpenGL product. These requirements
helped to drive the initial OpenGL product definition.

As the program progressed, the Fast-break team developed a
suite of tools that enabled detailed analysis of OpenGL appli-
cations. Analysis of key applications was used to further refine
our OpenGL product performance and functionality. Analysis
also yielded a set of synthetic API benchmarks that repre-
sented the behavior of key applications. These synthetic
benchmarks enabled HP to perform early hands-on evaluation
of the OpenGL product long before the actual applications
were ported to HP.

Pre-porting laid the groundwork for the actual porting of appli-
cations to HP’s implementation of OpenGL. The first phase of

the porting took place during the OpenGL beta program. In this
program, the HP fast-break team worked closely with selected
application developers to initiate the porting effort. A software-
only implementation of the OpenGL product was used, which
enabled the beta program to take place even before hardware
was available.

As hardware became available, the beta program was super-
seded by the early access program. This program included the
original beta participants and additional selected developers.
In both the beta and early access programs, HP found that the
homework done earlier by the fast-break team paid big divi-
dends. Most applications were ported to HP in just a few days
and, in some cases, just a few hours!

Although not completely defect-free, these early versions of
OpenGL were uniformly high-performance and high-quality
products. By accelerating the application porting effort, HP
was able to identify and resolve the few remaining issues
before the product was officially released.

The ongoing involvement of the fast-break team with the
OpenGL product development teams helped HP do it right the
first time by delivering a high-quality, high-performance imple-
mentation of OpenGL and enabling rapid porting of key appli-
cations to the HP product.

engineering process we used to accelerate the time to
market for OpenGL.

Graphics Middleware

A fast graphics API is not always enough. Leading edge
CAD modelling problems far exceed the interactive ca-
pacity of graphical super workstations. For example, try
spinning a complete CAD model of a Boeing 777 at 30
frames per second on any system.

What is needed is a new approach to solving the render-
ing problem of very large models. The goal is to trade
off between frame rate, image quality, and system cost.

HP has introduced a toolkit for use by CAD ISVs to
assist them in solving this problem. The toolkit is called
DirectModel and is described on page 19.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura-
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

http://www.hp.com/hpj/98may/ma98a2.htm
http://www.hp.com/hpj/journal.html

9 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

An Overview of the HP OpenGL Software
Architecture

OpenGL is a hardware-independent specification of a 3D graphics programming

interface. This specification has been implemented on many different vendors’

platforms with different CPU types and graphics hardware, ranging from

PC-based board solutions to high-performance workstations.

The OpenGL API defines an interface (to graphics hardware) that deals

entirely with rendering 3D primitives (for example, lines and polygons). The

HP implementation of the OpenGL standard does not provide a one-to-one

mapping between API functions and hardware capabilities. Thus, the software

component of the HP OpenGL product fills the gaps by mapping API functions

to OpenGL-capable systems.

Since OpenGL is an industry-standard graphics API, much of the differentiating

value HP delivers is in performance, quality, reliability, and time to market.

The central goal of the HP implementation is to ship more performance and

quality much sooner.

What is OpenGL?

OpenGL differs from other graphics APIs, such as Starbase, PHIGS, and PEX

(PHIGS extension in X), in that it is vertex-based as opposed to primitive-

based. This means that OpenGL provides an interface for supplying a single

vertex, surface normal, color, or texture coordinate parameter in each call.

Several of the calls between an OpenGL glBegin and glEnd pair define

a primitive that is then rendered. Figure 1 shows a comparison of the

different API call formats used to render a rectangle. In PHIGS a single call

could render a primitive by referencing multiple vertices and their associated

data (such as normals and color) as parameters to the call. This difference in

procedure calls per primitive (one versus eight for a shaded triangle) posed

a performance challenge for our implementation.

	���� ��
�������

����� �� ����

������� �� ������

������� �� �����!����������

����� �� �������

10 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

Figure 1

Graphics API call comparison.

Starbase OpenGL

glBegin(GL_QUADS);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glNormal(...);
glVertex(...);
glEnd();

polygon3d(...);

PEXFillAreaSetWithData(...);

PEXlib

An OpenGL implementation consists of the following
elements:

� A rendering library (GL) that implements the OpenGL
specification (the rendering pipeline)

� A utility library (GLU) that implements useful utility
functions that are layered on top of OpenGL (for
example, surfaces, quadratics, and tessellation functions)

� An interface to the system’s windowing package, includ-
ing GLX for X Window Systems on the UNIX operating
system and WGL for Microsoft Windows .

Implementation Goals

The goals we defined for the OpenGL program that helped
to shape our implementation were to:

� Achieve and sustain long term price/performance leader-
ship for OpenGL applications running on HP platforms

� Develop a scalable architecture that supports OpenGL
on a wide range of HP platforms and graphics devices.

The rest of this article will provide more details about
our OpenGL implementation and show how these goals
affected our system design.

OpenGL API

In general, OpenGL defines a traditional 3D pipeline for
rendering 3D primitives. This pipeline takes 3D coordi-
nates as input, transforms them based on orientation or
viewpoint, lights the resulting coordinates, and then ren-
ders them to the frame buffer (Figure 2).

To implement and control this pipeline, the OpenGL API
provides two classes of entry points. The first class is
used to create 3D geometry as a combination of simple
primitives such as lines, triangles, and quadrilaterals.
The entry points that make up this class are referred to
as the vertex API, or VAPI, functions. The second class,
called the state class, manipulates the OpenGL state used
in the different rendering pipeline stages to define how to
operate (transform, clip, and so on) on the primitive data.

VAPI Class

OpenGL contains a series of entry points that when used
together provide a powerful way to build primitives. This
flexible interface allows an application to provide primi-
tive data directly from its private data structures rather
than requiring it to define structures in terms of what the
API requires, which may not be the format the application
requires.

Primitives are created from a sequence of vertices. These
vertices can have associated data such as color, surface
normal, and texture coordinates. These vertices can be
grouped together and assigned a type, which defines how
the vertices are connected and how to render the resulting
primitive.

The VAPI functions available to define a primitive include
glVertex (specify its coordinate), glNormal (define a surface
normal at the coordinate), glColor (assign a color to the
coordinate), and several others. Each function has several
forms that indicate the data type of the parameter (for
example, int, short, and float), whether the data is passed
as a parameter or as a pointer to the data, and whether
the data is one-, two-, three-, or four-dimensional. Alto-
gether there are over 100 VAPI entry points that allow for
maximum application flexibility in defining primitives.

The VAPI functions glBegin and glEnd are used to create
groups of these vertices (and associated data). glBegin
takes a type parameter that defines the primitive type and
a count of vertices. The type can be point, line, triangle,

Figure 2

Graphics pipeline.

Transform Lighting Rasterize
Pixels

3D
Coordinates

11 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

triangle strip, quadrilateral, or polygon. Based on the type
and count, the vertices are assembled together as primi-
tives and sent down the rendering pipeline.

For added efficiency and to reduce the number of proce-
dure calls required to render a primitive, vertex arrays
were added to revision 1.1 of the OpenGL specification.
Vertex arrays allow an application to define a set of ver-
tices and associated data before their use. After the vertex
data is defined, one or more rendering calls can be issued
that reference this data without the additional calls of
glBegin, glEnd, or any of the other VAPI calls.

Finally, OpenGL provides several rendering routines that
do not deal with 3D primitives, but rather with rectangular
areas of pixels. From OpenGL, an application can read,
copy, or draw pixels to or from any of the OpenGL
image, depth, or texture buffers.

State Class

The state class of API functions manipulates the OpenGL
state machine. The state machine defines how vertices
are operated on as they pass through the rendering pipe-
line. There are over 100 functions in this class, each con-
trolling a different aspect of the pipeline. In OpenGL most
state information is orthogonal to the type of primitive
being operated on. For example, there is a single primitive
color rather than a specific line color, polygon color, or
point color. These state manipulation routines can be
grouped as:

� Coordinate transformation

� Coloring and lighting

� Clipping

� Rasterization

� Texture mapping

� Fog

� Modes and execution.

Pipeline

Coordinate data (such as vertex, color, and surface nor-
mal) can come directly from the application, indirectly
from the application through the use of evaluators,* or
from a stored display list that the application had pre-
viously created. The coordinates flow into the pipeline as

* Evaluators are functions that derive coordinate information based on parametric curves
or surfaces and basic functions.

discrete points and are operated on (transformed) individ-
ually. At a certain point in the pipeline the vertices are
assembled into primitives, and they are operated on at the
primitive level (for example, clipping). Next, the primi-
tives are rasterized into fragments in which operations
like depth testing occur on each fragment. The final result
is pixels that are written into the frame buffer. This more
complex OpenGL pipeline is shown in Figure 3.

Conceptually, the transform stage takes application-
specified object-space coordinates and transforms them
to eye-space coordinates (the space that positions the
object with respect to the viewer) with a model-view
matrix. Next, the eye coordinates are projected with a

Figure 3

OpenGL pipeline.

Current
Normal

Current
Color

glNormalglVertex glColor glTextCoord

Lighting
and Coloring

Model-View
Matrix

Texture
Matrix

Primitive Assembly

Clipping
Projection

Matrix

Rasterization
Texture
Matrix

Per-Fragment
Operation

Frame
Buffer

Vertices

Primitives

Fragments

Pixels

Transform

Lighting

Rasterize

Current Text
Coordinates

12 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

Figure 4

Transformation from object-space to window coordinates.

Object
Coordinates

Model-View
Matrix

Eye
Coordinates

Clip
CoordinatesProjection

Matrix
Perspective

Divide
Viewport
Transform

Normalized
Device

Coordinates
[–1,1]

Window
Coordinates

XO
YO
ZO
WO

XW
YW
ZW
WW

Lighting and Model
Clipping Applied

View Volume
Clipping Applied

projection matrix, divided by the perspective, and then
transformed by the viewport matrix to get them to screen
space (relative to a window). This process is summarized
in Figure 4.

In the lighting stage, a color is computed for each vertex
based on the lighting state. The lighting state consists of
a number of lights, the type of each light (such as posi-
tional or spotlight), various parameters of each light (for
example, position, pointing direction, or color), and the
material properties of the object being lit. The calculation
takes into consideration, among other things, the light
state and the distance of the coordinate to each light, re-
sulting in a single color for the vertex.

In rasterization, pixels are written based on the primitive
type, and the pixel value to be written is based on various
rasterization states (such as texture mapping enabled, or
polygon stipple enabled). OpenGL refers to the resulting
pixel value as a fragment because in addition to the pixel
value, there is also coverage, depth, and other state infor-
mation associated with the fragment. The depth value is
used to determine the visibility of the pixel as it interacts
with existing objects in the frame buffer. While the cover-
age, or alpha, value blends the pixel value with the exist-
ing value in the frame buffer.

Software Architecture

One of the main design goals for the HP OpenGL software
architecture was to maximize performance where it
would be most effective. For example, we decided to
focus on reducing overhead to hardware-accelerated
paths and to base design decisions on application use,
minimizing the effort and cost required to support future
system hardware. The resulting architecture is composed
of two major components: a device-independent module

and a device-specific module. A simple block diagram is
shown in Figure 5.

The dispatch component is responsible for handling
OpenGL API calls and sending them to the appropriate
receiver. OpenGL can be in one of the following modes:

� Protocol mode in which API calls are packaged up and
forwarded to a remote system for execution

� Display list creation mode in which API calls are stored
in a display list for later execution

� Direct rendering mode in which API calls are intended
for immediate rendering on the local screen.

Figure 5

OpenGL architecture.

Device-Independent
Module

API

Dispatch Module

Hardware

Device-Specific
Module

Streamlines

13 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

The primary application path of any importance is the
immediate rendering path. While in direct rendering mode
the performance of all functions is important, but the per-
formance of the VAPI calls is even more critical because
of the increased frequency of rendering calls over other
types of calls, like state setting. Any overhead in transfer-
ring application rendering commands to the hardware
reduces overall performance significantly. See the “System
Design Results” section in this article on page 14 for a dis-
cussion on some of these issues.

The device-independent module is the target for all the
OpenGL state manipulation calls, and in some situations,
for VAPI calls such as display list or protocol generation.
This module contains state management, all system con-
trol logic, and a complete software implementation of
the OpenGL rendering pipeline up to the rasterization
stage, which is used in situations where the hardware
does not support an OpenGL feature. The device in-
dependent module is made up of several submodules,
including:

� GLX (OpenGL GLX support module) for handling win-
dow system dependent components, including context
management, X Window System interactions, and proto-
col generation

� SUM (system utilities module) for handling system
dependent components, including system interactions,
global state management, and memory management

� OCM (OpenGL control module) for handling OpenGL
state management, parameter checking, state inquiry
support, and notification of state changes to the appro-
priate module

� PCM (pipeline control module) for handling graphics
pipeline control, state validation, and the software
rendering pipeline

� DLM (display list module) for handling display list
creation and execution.

The device-specific module is basically an abstracted
hardware interface that resides in a separate shared li-
brary. Based on what hardware is available, the device-in-
dependent code dynamically loads the appropriate de-
vice-specific module. In general the device-specific
module is called only by the device-independent module,
never by the API, and converts the requests to hardware-
specific operations (register loads, operation execute). In

addition to a device-specific module for the VISUALIZE
fx series of graphics hardware, there is a virtual memory
driver device-specific module for handling OpenGL op-
erations on GLX pixmaps (virtual-memory-based image
buffers) or for rendering to hardware that does not sup-
port OpenGL semantics.

The final key component of the architecture is stream-
lines. Streamlines are part of the device-specific module
but are unique in that they are associated directly with the
API. On geometry-accelerated devices like the VISUALIZE
fx series, the hardware can support the full set of VAPI
calls. To minimize overhead and maximize performance,
the calls are targeted to optimized routines that communi-
cate directly with the hardware. In many cases these rou-
tines are coded in PA RISC 1.1 or PA RISC 2.0 assembly
language or C. At initialization time the appropriate rou-
tines are loaded in the dispatch table based on the system
type and are dynamically selected at run time.

An important thing to understand about streamlines is
that they can only be called when the current state is
“clean” and the hardware supports the current rendering
mode. An example of “not clean” is when the viewing
matrix has been changed, and the hardware needs to be
updated with the current transformation matrix. Because
the application can make several different calls to manip-
ulate the matrix, computing the state based on the view-
ing matrix and loading the hardware is deferred until it is
actually needed. For example, when a primitive is to be
rendered (initiated via a glBegin call), the state is made
clean (validated) by the device-independent code and sub-
sequent VAPI calls can be dispatched directly to the
streamlines. Another situation in which streamlines can-
not be called is when the hardware does not support a
feature, such as texture mapping in the VISUALIZE fx2

display hardware. In this situation the VAPI entry points
do not target the streamlines but rather the device-inde-
pendent code that implements what is called a general
path, or in other terms, a software rendering pipeline.

Three-Process Model

Under the X Window System on the UNIX operating sys-
tem, the OpenGL architecture uses a three-process model
to support the direct and indirect semantics of OpenGL.
In our implementation, we have leveraged our existing
direct hardware access (DHA) technology to provide in-
dustry-leading local rendering performance. This has been

14 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

Figure 6

Three-process rendering model.

Virtual
Memory
Module

Device-
Specific
Module

OpenGL
GLX

OpenGL API

Application

Device-Specific
Module

OpenGL

OpenGL API

OpenGL Daemon

Hardware

Indirect Rendering

Device-Independent X

Dispatch Module

Device-Independent X

HardwareHardware

DHA Rendering Virtual Rendering

Process 1
Application

Process 2
X Server

Process 3
OpenGL Daemon

GLX Protocol

X Protocol

GLX Protocol

DHA VGL Protocol

coupled with two distinct remote rendering modes, making
our OpenGL implementation one of the most flexible im-
plementations in the industry. These rendering modes are
based upon the three-process rendering model shown in
Figure 6. This model supports three rendering modes:
direct, indirect, and virtual.

Direct Rendering. Direct rendering through DHA provides
the highest level of OpenGL performance and is used
whenever an OpenGL application is connected to a local
X server running on a workstation with VISUALIZE fx
graphics hardware. For all but a few operations, the appli-
cation process communicates directly with the graphics
hardware, bypassing the interprocess communication
overhead between the application and the X server.

Indirect Rendering (Protocol). Indirect rendering is used
primarily for remote operation when the target X server is
running on a different workstation than the user applica-
tion. In this mode, the OpenGL API library emits GLX
protocol which is interpreted by a receiving X server that
supports the GLX extension. The receiving server can be
HP, Sun Microsystems, Silicon Graphics International,
or any other X server that supports the GLX server exten-
sion. In the HP OpenGL implementation, the receiving
X server passes nearly all GLX protocol directly on to an
OpenGL daemon process that uses DHA for maximum
performance. Note that immediate mode rendering per-
formance through protocol can be severely limited by the
time it takes to send geometric data over the network.
However, when display lists are used, geometric data is

cached in the OpenGL daemon and remote OpenGL ren-
dering can be as fast or sometimes even faster than local
DHA rendering.

Virtual Rendering. As a value-added feature, HP OpenGL
also provides a virtual GL rendering mode not available in
other OpenGL implementations. Virtual rendering allows
an OpenGL application to be displayed on any X server or
X terminal even if the GLX extension is not supported on
that server. This is accomplished by rendering through the
virtual memory driver to local memory and then issuing
the standard XPutImage protocol to display images on the
target screen. Although flexible, virtual GL is typically the
slowest of the OpenGL rendering modes. However, virtual
GL rendering performance can be increased significantly
by limiting the size of the output window

System Design Results

To deliver industry-leading OpenGL performance, we
combined graphics hardware, libraries, and drivers. The
hardware is the core enabler of performance. Although
the excellence of each part is important, the overall system
design is even more so. How well the operating system,
compilers, libraries, drivers, and hardware fit together
in the system design determines the overall result. We
worked closely with teams in four HP R&D labs to opti-
mize the system design, apply our design values to parti-
tioning the system, balance performance bottlenecks, and
simplify the overall architecture and interfaces. The fol-
lowing section describes some examples of applying our

15 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

system design principles to the most important aspects
of 3D graphics applications.

Improving OpenGL Application Performance

OpenGL required a radical change from the existing
(legacy) HP graphics APIs. In analyzing the model for
our legacy graphics APIs, we realized that the same model
would have considerable overhead for OpenGL, which re-
quires many more procedure calls. Figure 1 compares the
calls required to generate the same shaded quadrilateral.

To have a competitive OpenGL, we needed to reduce or
eliminate function calls and locking overhead. We did this
with two system design initiatives called fast procedure

calls and implicit device locking.

Fast Procedure Calls. Two of our laboratories (the Graph-
ics Systems Laboratory and the Cupertino Language Labo-
ratory) worked together to create a specification for a
new, faster calling convention for making calls to shared
library components. This reduced the cost to one-fourth
the cost of the previous mechanism.

OpenGL is a state machine. When the application calls an
OpenGL function, different things happen depending on
the current state. We also wanted to support different de-
vices with varying degrees of support in the same OpenGL
library. We needed a dynamic method of dispatching API
function calls to the correct code to enable the appropriate
functionality without compromising performance. Given
this requirement, a naive implementation of OpenGL
might define each of its API functions like the following:

void glVertex3fv (const GLfloat *v)

{

 switch (context.whichFunction)

 {

 case HW_STREAMLINE:

 HW_STREAMLINE_glVertex3fv(v);

 break;

 case GENERAL_PATH:

 GENERAL_PATH_glVertex3fv(v);

 break;

 case GLX_PROTOCOL:

 GLX_PROTOCOL_glVertex3fv(v);

 break;

 case diSPLAY_LIST:

 diSPLAY_LIST_glVertex3fv(v);

 break;

 ...

 }

}

However, this is a very impractical implementation in
terms of both performance and software maintainability.
We decided that the most efficient method of achieving
this kind of dynamic dispatching was to retarget the API
function calls at their source—the application code. Any
call into a shared library is really a call through a pointer.
The procedure name that the application calls is associ-
ated with a particular pointer. Conceptually, what we
needed was a mechanism to manage the contents of
those pointers. To accomplish this, we needed more assis-
tance from the engineers in the compiler and linker
groups.

In simplified terms, the OpenGL library maintains a proce-
dure link table. Each entry in the procedure link table is
associated with a particular function name and is com-
posed of two pointers. One points to the code that is to
be called, and the other, the link table pointer, points to
the table used by shared library code (known as PIC, or
position-independent code) to locate global data. When
the compiler generates a call to an OpenGL function, it
loads the appropriate registers with the two fields in the
associated procedure link table entry and then branches
to the function. Since OpenGL controls the contents of
the procedure link table, it can change the contents of
these fields during execution. This allows OpenGL to
choose the appropriate code based on the OpenGL state
dynamically.

For example, assume that we have a graphics device
that, except for texture mapping, supports the OpenGL
pipeline in hardware. In this case the scheduling code
will find texture mapping enabled (meaning that the
device cannot handle texture mapping) and choose the
GENERAL_PATH_glVertex3fv code path, which performs soft-
ware texture mapping. The HW_STREAMLINE_glVertex3fv
code paths are taken if texture mapping is not enabled.

Implicit Device Locking. Graphics devices are a shared
system resource. As such, there must be some control
when an application has access to the graphics device so
that two applications are not attempting to use the device
at the same time. Normally the operating system manages
such shared resources via standard operating system in-
terfaces (open, close, read, write, and ioctl).

However, to get the maximum performance possible
for graphics applications, a user process will access the
graphics device directly through our 3D API libraries,
rather than use the standard operating system interfaces.

16 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

This means that before OpenGL, the HP graphics libraries
had to assume the task of managing shared access to the
graphics device.

Before OpenGL, we used a relatively lightweight fast lock
at the entry and exit of those library routines that actually
accessed the device. With the high frequency of function
calls in OpenGL, performing this lock and unlock step
for each function call would exact a severe performance
penalty, similar to the procedure call problem discussed
earlier.

To solve this problem, HP engineers invented a technique
called implicit device locking. When a process tries to
access the graphics hardware and does not own the
device, a virtual memory protection fault exception will
be generated. The kernel must detect that this protection
fault was an attempted graphics device access instead of
a fault from trying to access something like an invalid
address, a swapped out page, or from doing a copy on a
write page.

The graphics fault alerts the system that there is another
process trying to access the graphics device. The kernel
then makes sure that the graphics device context is saved,
and the graphics context for the next process is restored.
After the graphics context switch is complete, the new
process is allowed to continue with access to the device,

and permission is taken away from all other processes.
This allows the current process that owns the device to
have zero overhead access.

This method removes the requirement that the 3D graphics
API library must explicitly lock the graphics device while
accessing it. This means that the overhead associated
with device locking, which was an order of magnitude
more than with Starbase, is completely eliminated (see
Figure 7).

This dramatic improvement in performance is made pos-
sible by improvements in the HP-UX* kernel and careful
design of the graphics hardware. The basic idea is that
when multiple graphics applications are running, the
HP-UX kernel will ensure that each application gets its
fair share of exclusive time to access the graphics device.

OpenGL was not the only API to benefit from implicit
locking. The generality of the design allowed us to use
the same mechanism to eliminate the locking code from
Starbase as well. Keeping the whole system in mind
while developing this technology allowed us to expand
the benefit beyond the original problem—excessive over-
head from locking for OpenGL.

Figure 7

State count comparison.

Starbase OpenGL

Starting Point

Fast Procedure Calls

Implicit LockingGraphics

Graphics

Graphics

Graphics

Function Calls

Function Calls

Function Call

Function Calls

LockingLocking
Locking

State
Count

17 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

Hardware and Software Trade-offs

Keeping the whole picture in mind allowed us to make
software and hardware trade-offs to simplify the system
design. The criteria were based on performance critical-
ity, frequency of use, system complexity, and factory cost.

For example, the hardware was designed to understand
both OpenGL and Starbase windows. OpenGL requires
the window origin to be in the lower left corner, whereas
Starbase requires it to be in the upper left. Putting the
intelligence in the hardware reduced the overall system
complexity.

Nearly all OpenGL features are hardware accelerated. Of
course, all vertex API formats and dimensions are stream-
lined and accelerated in hardware for maximum primitive
performance. Similarly, all fragment pipeline operations
had to be supported in hardware because fragment opera-
tions touch every pixel and software performance would
not be sufficient. To maximize primitive performance, we
also hardware-accelerated nearly every geometry pipeline
feature. For example, all lighting modes, fog modes, and
arbitrary clip planes are hardware-accelerated. Very few
OpenGL features are not hardware-accelerated.

Based on infrequent use and the ability to reasonably ac-
celerate in software, we implemented the following func-
tions in software: RasterPos, Selection, Feedback, Indexed
Lighting, and Indexed Fog. Infrequent use and factory cost
also encouraged us to implement accumulation buffer
support in software. (Accumulation is an operation that
blends data between the frame buffer and the accumula-
tion buffer, allowing effects like motion blur.)

State Change

Through systems design we achieved dramatic results in
application performance by focusing on the design for
OpenGL state change operations.

Application graphics performance is a function of both
primitive and state change (attributes) performance. We
have designed our OpenGL implementation to maximize
primitive performance and minimize the costs of state
changes.

State changes include all the function calls that modify the
OpenGL modal state, including coordinate transformations,
lighting state, clipping state, rasterization state, and texture
state. State change does not include primitive calls, pixel

operations, display list calls, or current state calls. Cur-
rent state encompasses all the OpenGL calls that can
occur either inside or outside glBegin() and glEnd() pairs
(for example, glColor(), glNormal(), glVertex()).

There are two classes of state changes: fragment pipeline
and geometry pipeline. Fragment pipeline state changes
control the back end, or rasterization stage, of the graphics
pipeline. This state includes the depth test enable (z-buffer
hidden surface removal) and the line stipple definition
(patterned lines such as dash or dot). Geometry pipeline
state changes control the front end of the graphics pipe-
line. This state includes transformation matrices, lighting
parameters, and front and back culling parameters. Frag-
ment pipeline state changes are generally less costly than
geometry pipeline state changes.

Our systems design focussed on several areas that resulted
in large application performance gains. We realized that
the performance of our state change implementation could
significantly affect application performance. We decided
that this was important enough to require a redesign of
the state change modules and not just tuning. Applying
these considerations led us to implement immediate and
deferred validation schemes and provide redundancy
checks at the beginning of each state change entry point.

Validation. We implemented different immediate and de-
ferred validation schemes* for different classes of state
changes. Geometry pipeline state changes are handled by
deferred validation because they tend to be more com-
plex, requiring massaging of the state. They are also more
interlocked because changing one piece of state requires
modifying another piece of state (for example, matrix
changes cause changes to the light state). For us, deferred
validation resulted in a simple design and increased per-
formance, reliability, and maintainability. For fragment
pipeline state changes, we chose immediate validation
because this state is relatively simple and noninterlocked.

Redundancy Checks. Redundancy checks are done for all
OpenGL API calls. Because our analysis showed that ap-
plications often call state changing routines with a redun-
dant state (for example, new value==current value), we

* Validation is the mechanism that verifies that the current specified state is legal, com-
putes derived information from the current state necessary for rendering (for example an
inverse matrix for lighting based on the current model matrix), and loads the hardware
with the new state.

18 May 1998 • The Hewlett-Packard JournalArticle 2 • 1998 Hewlett Packard Company

wanted a design in which this case performs well. There-
fore, our design includes redundancy checks at the begin-
ning of each state change entry point, which allows a quick
return without exercising the unnecessary validation code.

Results. For state-change intensive applications, these
design decisions put us in a leadership position for
OpenGL application performance, and we achieved
greater than a 2× performance gain over our previous
graphics libraries. Smaller application performance gains
were achieved throughout our OpenGL implementation
with the state-change design.

Conclusion

ISVs and customers indicate that we have met our appli-
cation leadership price and performance goals that we set
at the start of the program. We have also exceeded the
performance metrics we committed to at the beginning of
the project. For more information regarding our perfor-
mance results, visit the web site:

 http://www.spec.org/gpc/opc

For long-term sustainability of our price and performance
leadership, we have continued working closely with our
ISVs to tune our implementation in areas that improve
application performance. In addition, new CPUs are

planned that will allow our implementation to run faster
without any effort on our part, and cost reductions are
continuing in graphics hardware.

The goal to develop an implementation that can support a
wide range of CPU or graphics devices has already been
demonstrated. We support three graphics devices that
have different performance levels (all based on the same
hardware architecture) and a pure software implementa-
tion that supports simple frame buffer devices on UNIX
and Windows NT systems.

Bibliography

1. M. Woo, J. Neider, and T. Davis, OpenGL Programming

Guide, second edition, Addison Wesley, 1997.

2. OpenGL Reference Manual, second edition, OpenGL Architec-
ture Review Board, 1997.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura-
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

	���� ��
�������

This author’s biography appears on page 6.

������� �� ������

A graduate of the Univer-

sity of Connecticut in

1983 with a BSEE degree,

Michael Phelps is now involved in current

product engineering for the VISUALIZE fx

family of graphics subsystems. He came to HP

in 1994. He was born in Glen Cove, New York.

He is married and enjoys hunting, fishing, and

competitive shooting sports.

������� ��

�����!����������

Courtney Goeltzen-

leuchter is a software

engineer at the HP Per-

formance Desktop Computer Operation. With

HP since 1995, he currently is responsible for

design and development of graphics drivers

and hardware and software interfaces for the

HP 3D graphics accelerators. He graduated

from the University of California at Berkeley

in 1987 with a BA degree in computer science.

Born in Tucson, Arizona, Courtney is

married and has one child. He enjoys hiking,

reading science fiction, and playing with his

computer.

����� �� �������

Donley Hoffman is a soft-

ware engineer at the

Workstation Systems

Division and is responsible for maintenance

and support for current and future OpenGL

products. He graduated from New Mexico

State University in 1974 with a BS degree in

computer science. He came to HP in 1985.

Born in Alamogardo, New Mexico, Don is

married and has three children. His outside

interests include skiing, tennis, playing the

oboe and piano, running, reading, hiking,

and snorkling.

����� �� ����

This author’s biography appears on page 41.

http://www.spec.org/gpc/opc
http://www.hp.com/hpj/98may/ma98a1.htm
http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/98may/ma98a3.htm
http://www.hp.com/hpj/journal.html

19 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

The DirectModel Toolkit: Meeting the 3D
Graphics Needs of Technical Applications

The increasing use of 3D modeling for highly complex mechanical designs has

led to a demand for systems that can provide smooth interactivity with 3D

models containing millions or even billions of polygons.

DirectModel* is a toolkit for creating technical 3D graphics applications.

Its primary objective is to provide the performance necessary for interactive

rendering of large 3D geometry models containing millions of polygons.

DirectModel is implemented on top of traditional 3D graphics applications

programming interfaces (APIs), such as Starbase or OpenGL . It provides the

application developer with high-level 3D model management and advanced

geometry culling and simplification techniques. Figure 1 shows DirectModel’s

position within the architecture of a 3D graphics application.

This article discusses the role of 3D modeling in design engineering today, the

challenges of implementing 3D modeling in mechanical design automation

(MDA) systems, and the 3D modeling capabilities of the DirectModel toolkit.

Visualization in Technical Applications

The Role of 3D Data

3D graphics is a diverse field that is enjoying rapid progress on many fronts.

Significant advances have been made recently in photorealistic rendering,

animation quality, low-cost game platforms, and state-of-the-art immersive

* DirectModel was jointly developed by Hewlett-Packard and Engineering Animation Incorporated of Ames, Iowa.

Figure 1

Application architecture.

Application DirectModel

Core
Graphics

API
(OpenGL)

System
Hardware

and
Software

���	� �� ����

����	� �� �	����

���	� �� ����

With HP since 1982, Brian

Cripe is a project manager

at the HP Corvallis Imaging

Operation. He is responsible for DirectModel

relationships with developers, Microsoft , and

Silicon Graphics . He has worked on the HP

ThinkJet and DeskJet printers and the Common

Desktop Environment. He received a BSEE

in 1982 from Rice University. Brian was born

in Anapolis, Brazil, is married and has two

daughters.

����	� �� �	����

Thomas Gaskins was the

project leader for the

DirectModel project at the

HP Corvallis Imaging Operation. With HP since

1995, he received a BS degree in mechanical

engineering (1993) from the University of

California at Santa Barbara. He specialized in

numerical methods. His professional interests

include 3D graphics and software architecture.

20 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 2

A low-resolution image of a 3D model of an engine
consisting of 150,000 polygons.

virtual reality* applications. The Internet is populated
with 3D virtual worlds and software catalogs are full of
applications for creating them. An example of a 3D model
is shown in Figure 2.

What do these developments mean for the users of tech-
nical applications (the scientists and engineers who pio-
neered the use of 3D graphics as a tool for solving com-
plex problems)? In many ways this technical community
is following the same trends as the developers and users
of nontechnical applications such as 3D games and inter-
active virtual worlds. They are interested in finding less
expensive systems for doing their work, their image
quality standards are rising, and their patience with poor
interactive performance is wearing thin.

However, there are other areas where the unique aspects
of 3D data for technical applications create special require-
ments. In many applications the images created from the
3D data that are displayed to the user are the goal. For
example, the player of a game or the pilot in a flight simu-
lator cares a lot about the quality and interactivity of

* Immersive virtual reality is a technology that “immerses” the viewer into a virtual reality
scene with head-mounted displays that change what is viewed as the user’s head rotates
and with gloves that sense where the user’s hand is positioned and apply force feedback.

the images, but cares very little about the data used by the
system to create those images. In contrast, many techni-
cal users of 3D graphics consider their data to be the most
important component. The goal is to create, analyze, or
improve the data, and 3D rendering is a useful means to
that end.

This key distinction between data that is the goal itself
and data that is a means to an end leads to major differ-
ences in the architectures and techniques for working with
those data sets.

3D Model Complexity

Understanding the very central role that data holds for
the technical 3D graphics user immediately leads to the
questions of what is that data and what are the significant
trends over time? The short answer is that the size of the
data is big and the amount and complexity of that data is
increasing rapidly. For example, a mechanical engineer
doing stress analysis may now be tackling problems
modeled with millions of polygons instead of the thou-
sands that sufficed a few years ago.

The trends in the mechanical design automation (MDA)
industry are good examples of the factors causing this
growth. In the not-too-distant past mechanical design was
accomplished using paper and pencil to create part draw-
ings, which were passed on to the model shop to create
prototype parts, and then they were assembled into proto-
type products for testing. The first step in computerizing
this process was the advent of 2D mechanical drafting
applications that allowed the mechanical engineers to
replace their drafting boards with computers. However,
the task was still to produce a paper drawing to send to
the model shop. The next step was to replace these 2D
drafting applications with 3D solid modelers that could
model the complete 3D geometry of a part and support
tasks such as static and dynamic design analysis to find
such things as the stress points when the parts move. This
move to 3D solid modeling has had a big impact at many
companies as a new technique for designing parts. How-
ever, in many cases it has not resulted in a fundamental
change to the process for designing and manufacturing
whole products.

Advances. In the last few years advances in the mechan-
ical design automation industry have increasingly
addressed virtual prototyping and other whole-product

21 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Fahrenheit

Hewlett-Packard, Microsoft, and Silicon Graphics are collabo-
rating on a project, code-named “Fahrenheit,” that will define
the future of graphics technologies. Based on the creation of a
suite of APIs for DirectX on the Windows and UNIX operat-
ing systems, the Fahrenheit project will lead to a common,
extensible architecture for capitalizing on the rapidly expand-
ing marketplace for graphics.

Fahrenheit will incorporate the Microsoft Direct3D and Direct-
Draw APIs with complementary technologies from HP and
Silicon Graphics. HP is contributing DirectModel to this effort
and is working with Microsoft and Silicon Graphics to define
the best integration of the individual technologies.

design issues. This desire to create new tools and
processes that allow a design team to design, assemble,
operate, and analyze an entire product in the computer is
particularly strong at companies that manufacture large
and complex products such as airplanes, automobiles,
and large industrial plants. The leading-edge companies
pioneering these changes are finding that computer-based
virtual prototypes are much cheaper to create and easier
to modify than traditional physical prototypes. In addition
they support an unprecedented level of interaction among
multiple design teams, component suppliers, and end users
that are located at widely dispersed sites.

This move to computerized whole-product design is in
turn leading to many new uses of the data. If the design
engineers can interact online with their entire product,
then each department involved in product development
will want to be involved. For example, the marketing
department wants to look at the evolving design while
planning their marketing campaign, the manufacturing
department wants to use the data to ensure the product’s
manufacturability, and the sales force wants to start
showing it to customers to get their feedback.

These tasks all drive an increased demand for realistic
models that are complete, detailed, and accurate. For
example, mechanical engineers are demanding new levels
of realism and interactivity to support tasks such as posi-
tioning the fasteners that hold piping and detecting inter-
ferences created when a redesigned part bumps into one
of the fasteners. This is a standard of realism that is very
different from the photorealistic rendering requirements
of other applications and to the technical user, a higher
priority.

Larger Models . These trends of more people using better
tools to create more complete and complex data sets
combine to produce very large 3D models. To under-
stand this complexity, imagine a complete 3D model of
everything you see under the hood of your car. A single
part could require at least a thousand polygons for a de-
tailed representation, and a product such as an automo-
bile is assembled from thousands of parts. Even a small
product such as an HP DeskJet printer that sits on the
corner of a desk requires in excess of 300,000 triangles1

for a detailed model. A car door with its smooth curves,
collection of controls, electric motors, and wiring har-
ness can require one million polygons for a detailed
model—the car’s power train can consist of 30 million
polygons.2

These numbers are large, but they pale in comparison to
the size of nonconsumer items. A Boeing 777 airplane
contains approximately 132,500 unique parts and over
3,000,000 fasteners,3 yielding a 3D model containing more
than 500,000,000 polygons.4 A study that examined the
complexity of naval platforms determined that a sub-
marine is approximately ten times more complex than
an airplane, and an aircraft carrier is approximately ten
times more complex than a submarine.5 3D models con-
taining hundreds of millions or billions of polygons are
real today.

As big as these numbers are, the problem does not stop
there. Designers, manufacturers, and users of these com-
plex products not only want to model and visualize the
entire product, but they also want to do it in the context
of the manufacturing process and in the context in which
it is used. If the ship and the dry dock can be realistically

22 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

modeled and combined, it will be far less expensive to
find and correct problems before they are built.

Current System Limitations

If the task faced by technical users is to interact with very
large 3D models, how are the currently available systems
doing? In a word, badly. Clearly the graphics pipeline
alone is not going to solve the problem even with hard-
ware acceleration. Assuming that rendering performance
for reasonable interactivity must be at least 10 frames per
second, a pipeline capable of rendering 1,000,000 poly-
gons per second has no hope of interactively rendering
any model larger than 100,000 polygons per frame. Even
the HP VISUALIZE fx6, the world’s fastest desktop graph-
ics system, which is capable of rendering 4.6 million
triangles per second, can barely provide 10 frames per
second interactivity for a complete HP DeskJet printer
model.

This is a sobering reality faced by many mechanical
designers and other technical users today. Their systems
work well for dealing with individual components but
come up short when facing the complete problem.

Approaches to Solving the Problem

There are several approaches to solve the problem of ren-
dering very complex 3D models with interactive perfor-
mance. One approach is to increase the performance
of the graphics hardware. Hewlett-Packard and other
graphics hardware vendors are investing a lot of effort
in this approach. However, increasing hardware perfor-
mance alone is not sufficient because the complexity
of many customers’ problems is increasing faster than
gains in hardware performance. A second approach
that must also be explored involves using software algo-
rithms to reduce the complexity of the 3D models that
are rendered.

Complex Data Sets

To understand the general data complexity problem, we
must examine it from the perspective of the application
developer. If a developer is creating a game, then it is
perfectly valid to search for ways to create the imagery
while minimizing the amount of data behind it. This ap-
proach is served well by techniques such as extensive

use of texture maps on a relatively small amount of ge-
ometry. However, for an application responsible for pro-
ducing or analyzing technical data, it is rarely effective to
improve the rendering performance by manually altering
and reducing the data set. If the data set is huge, the ap-
plication must be able to make the best of it during 3D
rendering. Unfortunately, the problem of exponential
growth in data complexity cannot be solved through
incremental improvements to the performance of the
current 3D graphics architectures—new approaches are
required.

Pixels per Polygon

Although the problem of interactively rendering large 3D
models on a typical engineering workstation is challenging,
it is not intractable. If the workstation’s graphics pipeline
is capable of rendering a sustained 200,000 polygons per
second (a conservative estimate), then each frame must
be limited to 20,000 polygons to maintain 10 frames per
second. A typical workstation with a 1280 by 1024 moni-
tor provides 1,310,720 pixels. To cover this screen com-
pletely with 20,000 polygons, each polygon must have an
average area of 66 pixels. A more realistic estimate is that
the rendered image covers some subset of the screen, say
75 percent, and that several polygons, for example four,
overlap on each pixel, which implies each polygon must
cover an area of approximately 200 pixels.

On a typical workstation monitor with a screen resolution
of approximately 100 pixels per inch, these polygons are a
bit more than 0.1-inch on a side. Polygons of this size will
create a high enough quality image for most engineering
tasks. This image quality is even more compelling when
you consider that it is the resolution produced during
interactive navigation. A much higher-quality image can
be rendered within a few seconds when the user stops
interacting with the model. Thus, today’s 3D graphics
workstations have enough rendering power to produce
the fast, high-quality images required by the technical
user.

Software Algorithms

The challenge of interactive large model rendering is sort-
ing through the millions of polygons in the model and
choosing (or creating) the best subset of those polygons

23 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 3

Geometry culling.

Geometry Outside
the View Frustum

Occluded
Geometry

Visible
Geometry

that can be rendered in the time allowed for the frame.
Algorithms that perform this geometry reduction fall into
two broad categories: culling, which eliminates unneces-
sary geometry, and simplification, which replaces some
set of geometry with a simpler version.

Figure 3 illustrates two types of culling: view frustum

culling (eliminating geometry that is outside of the user’s
field of view) and occlusion culling (eliminating geometry
that is hidden behind some other geometry). The article
on page 9 describes the implementation of occlusion
culling in the VISUALIZE fx graphics accelerator.

Figures 4 and 5 show two types of simplification. Figure

4 shows a form of geometry simplification called tessella-

tion, which takes a mathematical specification of a smooth
surface and creates a polygonal representation at the spe-
cified level of resolution.

Figure 4

Geometry tessellation.

Smooth
Curve

Fine
Tessellation

Coarse
Tessellation

The decimation simplification technique is shown in
Figure 5. This technique reduces the number of polygons
in a model by combining adjacent faces and edges.

The simplified geometry created by these algorithms is
used by the level of detail selection algorithms, which
choose the appropriate representation to render for each
frame based on criteria such as the distance to the object.

Most 3D graphics pipelines render a model by rendering
each primitive such as a polygon, line, or point individu-
ally. If the model contains a million polygons, then the
polygon-rendering algorithm is executed a million times.
In contrast, these geometry reduction algorithms must
operate on the entire 3D model at once, or a significant
portion of it, to achieve adequate gains. View frustum
culling is a good example—the conventional 3D graphics
pipeline will perform this operation on each individual
polygon as it is rendered. However, to provide any signifi-
cant benefit to the large model rendering problem, the
culling algorithm must be applied globally to a large chunk
of the model so that a significant amount of geometry can
be eliminated with a single operation. Similarly, the geo-
metry simplification algorithms can provide greatest gains
when they are applied to a large portion of the model.

Desired Solution

The performance gap (often several orders of magnitude)
between the needs of the technical user and the capabili-
ties of a typical system puts developers of technical appli-
cations into an unfortunate bind. Developers are often
experts in some technical domain that is the focus of their
applications, perhaps stress analysis or piping layout.
However, the 3D data sets that the applications manage
are exceeding the graphics performance of the systems

Figure 5

Geometry decimation.

Decimated GeometryFull Detail Geometry

24 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 6

Extended graphics pipeline.

Rasterization ImageApplication Simplification Culling Transformation Lighting and
Shading

Model-Based Operations Primitive-Based Operations

they run on. Developers are faced with the choice of ob-
taining the 3D graphics expertise to create a sophisticated
rendering architecture for their applications, or seeing
their applications lag far behind their customers’ needs
for large 3D modeling capacity and interactivity.

To develop applications with the performance demanded
by their customers, developers need access to graphics
systems that provide dramatic performance gains for their
tasks and data. As shown in Figure 6, the graphics pipe-
line available to the applications must be extended to
include model-based optimizations, such as culling and
simplification, so that it can support interactive rendering
of very large 3D models. When the graphics system pro-
vides this level of performance, application developers
are free to focus on improving the functionality of their
applications without concern about graphics perfor-
mance. The article on page 9 describes the primitive-
based operations of the pipeline shown in Figure 6.

DirectModel Capabilities

DirectModel is a toolkit for creating technical 3D graphics
applications. The engineer or scientist who must create,
visualize, and analyze massive amounts of 3D data does
not interact directly with DirectModel. DirectModel pro-
vides high-level 3D model management of large 3D geo-
metry models containing millions of polygons. It uses
advanced geometry simplification and culling algorithms
to support interactive rendering. Figure 1 shows that
DirectModel is implemented on top of traditional 3D
graphics APIs such as Starbase or OpenGL. It extends,
but does not replace, the current software and hardware
3D rendering pipeline.

Key aspects of the DirectModel toolkit include:

� A Focus on the needs of technical applications that deal
with large volumes of 3D geometry data

� Capability for cross-platform support of a wide variety
of technical systems

� Extensive support of MDA applications (for example,
translators for common MDA data types).

Technical Data

As discussed above, the underlying data is often the most
important item to the user of a technical application. For
example, when designers select parts on the screen and
ask for dimensions, they want to know the precise engi-
neering dimension, not some inexact dimension that re-
sults when the data is passed through the graphics system
for rendering. DirectModel provides the interfaces that
allow the application to specify and query data with this
level of technical precision.

Technical data often contains far more than graphical in-
formation. In fact, the metadata such as who created the
model, what it is related to, and the results of analyzing it
is often much larger than the graphical data that is ren-
dered. Consequently DirectModel provides the interfaces
that allow an application to create the links between the
graphical data and the vast amount of related metadata.

Components of large models are often created, owned,
and managed by people or organizations that are loosely
connected. For example, one design group might be
responsible for the fuselage of an airplane while a sepa-
rate group is responsible for the design of the engines.
DirectModel supports this multiteam collaboration
by allowing a 3D model to be assembled from several
smaller 3D models that have been independently defined
and optimized.

Multiple Representations of the Model

The 3D model is the central concept of DirectModel—the
application defines the model and DirectModel is respon-
sible for high-performance optimization and rendering of

25 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

Figure 7

Logical and spatial organization.

Car

Power Train

Engine

Differential

BodyBody

BodyHood

BodyTrunk

Car

BodyHood

Engine

BodyTrunk

Differential

BodyFront

BodyBack

Logical Relationships Spatial Relationships

it. The 3D model is defined hierarchically by the model
graph, which consists of a set of nodes linked together
into a directed, acyclic graph. However, a common prob-
lem that occurs when creating a model graph is the con-
flict between the needs of the application needs and the
graphics system. The application typically needs to orga-
nize the model based on the logical relationships be-
tween the components, whereas the graphics system
needs to organize the model based on the spatial rela-
tionships so that it can be efficiently simplified, culled,
and rendered. Figure 7 shows two model graphs for a car,
one organized logically and one spatially.

Graphics toolkits that use a single model graph for both
the application’s interaction with the model and for ren-
dering the model force the application developer to opti-
mize for one use while making the other use difficult. In
contrast, DirectModel maintains multiple organizations of
the model so that it can simultaneously be optimized for
several different uses. The application is free to organize
its model graph based on its functional requirements
without consideration of DirectModel’s rendering needs.
DirectModel will create and maintain an additional spatial
organization that is optimized for rendering. These multiple
organizations do not significantly increase the memory or

disk usage of DirectModel because the actual geometry,
by far the largest component, is multiply referenced, not
duplicated.

The Problem of Motion

Object motion, both predefined and interactive, is critical
to many technical applications. In mechanical design, for
example, users want to see suspension systems moving,
engines rocking, and pistons and valves in motion. To use
a virtual prototype for manufacturing planning, motion is
mandatory. Assembly sequences can be verified only by
observing the motion of each component as it moves into
place along its prescribed path. Users also want to grab
an object or subassembly and move it through space,
while bumping and jostling the object as it interferes with
other objects in its path. In short, motion is an essential
component for creating the level of realism necessary for
full use of digital prototypes.

DirectModel supports this demand for adding motion to
3D models in several ways. Because DirectModel does not
force an application to create a model graph that is opti-
mized for fast rendering, it can instead create one that is
optimized for managing motion. Parts that are physically
connected in real life can be connected in the model graph,

26 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

allowing movement to cascade easily through all of the
affected parts. In addition, the data structures and algo-
rithms used by DirectModel to optimize the model graph
for rendering are designed for easy incremental update
when some portion of the application’s model graph
changes.

Models as Databases

3D models containing millions of polygons with a rich set
of rendering attributes and metadata can easily require
several gigabytes of data. Models of this size are fre-
quently too big to be completely held in main memory,
which makes it particularly challenging to support
smooth interactivity.

DirectModel solves this problem by treating the model as a
database that is held on disk and incrementally brought in
and out of main memory as necessary. Elements of the
model, including individual level-of-detail representations,
must come from disk as they are needed and removed
from main memory when they are not needed. In this way
memory can be reserved for the geometric representa-
tions currently of interest. DirectModel’s large model
capability has as much to do with rapid and intelligent
database interaction as with rendering optimization.

Interactive versus Batch-Mode Data Preparation

Applications that deal with large 3D models have a wide
range of capabilities. One application may be simply an
interactive viewer of large models that are assembled from
existing data. Another application may be a 3D editor (for
example, a solid modeler) that supports designing me-
chanical parts within the context of their full assembly.
Consequently, an application may acquire and optimize a
large amount of 3D geometry all at once, or the parts of
the model may be created little by little.

DirectModel supports both of these scenarios by allowing
model creation and optimization to occur either interac-
tively or in batch mode. If an application has a great deal
of raw geometry that must be rendered, it will typically
choose to provide a batch-mode preprocessor that builds
the model graph, invokes the sorting and simplification
algorithms, and then saves the results. An interactive appli-
cation can then load the optimized data and immediately
allow the user to navigate through the data. However, if
the application is creating or modifying the elements of
the model at a slow rate, then it is reasonable to sort and
optimize the data in real time. Hybrid scenarios are also

possible where an interactive application performs incre-
mental optimization of the model with any spare CPU
cycles that are available.

The important thing to note in these scenarios is that
DirectModel does not make a strong distinction between
batch and interactive operations. All operations can be
considered interactive and the application developer is
free to employ them in a batch manner when appropriate.

Extensibility

Large 3D models used by technical applications have
different characteristics. Some models are highly regular
with geometry laid out on a fixed grid (for example,
rectangular buildings with rectangular rooms) whereas
others are highly irregular (for example, an automobile
engine with curved parts located at many different
orientations). Some models have a high degree of occlu-
sion where entire parts or assemblies are hidden from
many viewing perspectives. Other models have more
holes through them allowing glimpses of otherwise hid-
den parts. Some models are spatially dense with many
components packed into a tight space, whereas others
are sparse with sizable gaps between the parts.

These vast differences impact the choice of effective opti-
mization and rendering algorithms. For example, highly
regular models such as buildings are amenable to prepro-
cessing to determine regions of visibility (for example,
rooms A through E are not visible from any point in room
Z). However, this type of preprocessing is not very effec-
tive when applied to irregular models such as an engine.
In addition, large model visualization is a vibrant field of
research with innovative new algorithms appearing regu-
larly. The algorithms that seem optimal today may appear
very limiting tomorrow.

DirectModel’s flexible architecture allows application
developers to choose the right combination of techniques,
including creating new algorithms to extend the system’s
capabilities. All of the DirectModel functions, such as its
culling algorithms, representation generators, tessella-
tors, and picking operators, are extensible in this way.
Extensions fit seamlessly into the algorithms they ex-
tend, indistinguishable from the default capabilities in-
herent to the toolkit.

In addition, DirectModel supports mixed-mode rendering
in which an application uses DirectModel for some of its
rendering needs and calls the underlying core graphics

27 May 1998 • The Hewlett-Packard JournalArticle 3 • 1998 Hewlett Packard Company

API directly for other rendering operations. Although Di-
rectModel can fulfill the complete graphics needs of many
applications, it does not require that it be used exclusively.

Multiplatform Support

A variety of systems are commonly used for today’s tech-
nical 3D graphics applications, ranging from high-end
personal computers through various UNIX-based work-
stations and supercomputers. In addition, several 3D
graphics APIs and architectures are either established or
emerging as appropriate foundations for technical applica-
tions. Most developers of technical applications support a
variety of existing systems and must be able to migrate
their applications onto new hardware architectures as the
market evolves.

DirectModel has been carefully designed and implemented
for optimum rendering performance on multiple platforms
and operating systems. It presumes no particular graphics
API and is designed to select at run time the graphics API
best suited to the platform or specified by the application.
In addition, its core rendering algorithms dynamically
adapt themselves to the performance requirements of the
underlying graphics pipeline.

Conclusion

The increasing use of 3D graphics as a powerful tool for
solving technical problems has led to an explosion in the
complexity of problems being addressed, resulting in 3D
models containing millions or even billions of polygons.

Unfortunately, many of the applications and 3D graphics
systems in use today are built on architectures designed
to handle only a few thousands polygons efficiently.
These architectures are incapable of providing inter-
activity with today’s large technical data sets.

This problem has created a strong demand for new graph-
ics architectures and products that are designed for inter-
active rendering of large models on affordable systems.
Hewlett-Packard is meeting this demand with Direct-
Model, a cross-platform toolkit that enables interaction
with large, complex, 3D models.

References

1. Data obtained from design engineers at the Hewlett-Packard
Vancouver Division.

2. Estimates provided by automotive design engineers.

3. S.H. Shokralla, “The 21st Century Jet: The Boeing 777 Multi-
media Case Study,”

 http://pawn.berkely.edu/~shad/b777/main.html

4. E. Brechner, “Interactive Walkthrough of Large Geometric
Databases,” SIGGRAPH tutorial, 1995.

5. J.S. Lombardo, E. Mihalak, and S.R. Osborne, “Collaborative
Virtual Prototype, John Hopkins APL Technical Digest, Vol. 17,
no. 3, 1996.

UNIX is a registered trademark of The Open Group.

Microsoft, MS-DOS, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

http://www.hp.com/hpj/98may/ma98a3.htm
http://www.hp.com/hpj/journal.html

28 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

An Overview of the VISUALIZE fx Graphics
Accelerator Hardware

Three graphics accelerator products with different levels of performance are

based on varying combinations of five custom integrated circuits. In addition,

these products are the first ones from Hewlett-Packard to provide native

acceleration for the OpenGL API.

The VISUALIZE fx family of graphics subsystems consists of three

products, fx6, fx4, and fx2, and an optional hardware texture mapping module.

These products are built around a common architecture using the same

custom integrated circuits. The primary difference between these controllers

is the number of custom chips used in each product (see Table I).

Table I
Number of custom chips in the different

VISUALIZE fx products

Product

 Texture
Chip

Geometry
Chip

 Raster
Chip

 fx2 — 1 2

 fx4 1 2 2

 fx6 2 3 4

A chip-level block diagram of the VISUALIZE fx6 product is shown in Figure 1.

This is the most complex configuration and also the one with the highest

performance in the product line. The VISUALIZE fx4 and the VISUALIZE fx2

products use subsets of the chips used in the fx6. The fx6 and fx4 subsystems

have support for the optional hardware-accelerated texture map module,

which contains a local texture cache for storage of texture map images. If the

texture accelerator is not present, the bus between the interface chip and the

first raster chip is directly connected.

��� �� 	����

����� �� ����

�����
� ������

29 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Figure 1

A chip-level diagram of the VISUALIZE fx6 product.

200 MHz/
41 Bits

200 MHz/
33 Bits

Up to 8

Geometry
Chip

Geometry
Chip

Geometry
Chip

Interface
Chip

PCI2.1
66 MHz/
64 Bits

Geometry Accelerator

Raster
ChipHost

SGRAM SGRAM SGRAM SGRAM

Rasterizer

Frame Buffer RAM

Texture
Chip

Texture
Chip

SDRAM SDRAM

Texture Accelerator

Texture Cache RAM

Filtered Texture Data

200 MHz/41 Bits

Video
Chip

Video Control Bus

RGB

Video
Data

Vi
de

o
Re

fr
es

h
D

at
a

Interface Chip
• I/O Buffering
• 3D Geometry Workload Distribution

and Concentration
• 2D and 3D Data Path Arbitration
• 2D Acceleration
• YUV to RGB Conversion Support
• Pixel Level Pan and Zoom
• Pixel Level Image Rotations

Geometry Chip
• 3D Geometry and Lighting Acceleration

Texture Chip
• Texture Rasterization
• Texture Map Cache Controller
• Texture Memory Control
• Texture Interpolation

Raster Chip
• Fragment Processing
• Frame Buffer Control Functions

Video Chip
• Color Lookup Tables
• Video Timing
• Digital-to-Analog Conversion
• Video-Out Data

Raster
Chip

Raster
Chip

Raster
Chip

Interface Chip

The interface chip provides a PCI 2.1 (also referred to as
PCI 2X) compliant interface.* It operates at up to 66 MHz
in 64-bit mode. Special efforts have been made in the

* PCI � Peripheral Component Interconnect.

design of the buffering and the interface to the PCI. As a
result, the driver is able to sustain writes of 3D geometry
commands to the PCI at almost the theoretical maximum
rates that could be computed for the PCI. The article on
page 51 discusses PCI capability.

30 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Occlusion Culling

The HP fast-break program (page 8) enabled us to understand
customer requirements by analyzing what is important in
OpenGL graphics today. As a result, we developed a technol-
ogy called occlusion culling as an extension to OpenGL and
implemented it in the VISUALIZE fx graphics hardware.

We found that the data sets many graphics workstation cus-
tomers are trying to visualize are very complex. These data
sets have large numbers of small, complex components that
are not always visible in the final images. For instance, when
rendering an airplane, all of the MCAD parts are present in the
data set represented by potentially millions of polygons that
must be processed. However, when this airplane is viewed
from the outside only the outer surfaces are visible, not the fan
blades of the engine or the seats or bulkheads in the interior.

In a traditional 3D z-buffered graphics system, all polygons in
a scene must be processed by the graphics pipeline because it
is not known a priori which polygons will be visible and which
ones will be occluded (not visible). The notion of occlusion
culling, or removal of occluded objects, has been talked about
in the research community for several years. However, imple-
mentations tend to be in software where the performance is
not at a satisfactory level.

In the VISUALIZE fx series of graphics devices, HP developed
a very efficient algorithm that tests objects for visibility.
An application program can very quickly use the occlusion
culling visibility test to determine if a simple bounding box

representation of a more complex part is visible. Since a
bounding box, or more generally a bounding volume, com-
pletely encloses the more complex part, it is possible to know
a priori that if the bounding volume is not visible then the
complex part it encloses is not visible. Thus, the part that is
not visible does not need to be processed through the graphics
pipeline. The real benefit of occlusion culling comes when a
very complex part consisting of many vertices can be rejected,
avoiding the expenditure of valuable time to process it.

For very complex data sets, such as the airplane mentioned
above or an automobile, a tremendous performance increase
can be realized by using the HP occlusion culling technology.
To date, several ISVs have begun using occlusion culling in
their applications and are seeing a 25 to 100 percent increase
in graphics performance. This magnitude of performance bene-
fit typically costs a customer several thousand dollars for the
extra computational horsepower. HP includes this technology
as standard in all VISUALIZE fx series graphics accelerators,
giving even better price and performance results to our
customers.

The future of 3D graphics will continue toward visualizing ever
more complex objects and environments. Occlusion culling
together with HP’s DirectModel technology (page 19) are
well positioned to be industry leaders in providing the technol-
ogy for 3D modeling applications.

The primary responsibility of the interface chip is to sepa-
rate the streams of data that arrive from the host SPU into
three paths and arbitrate access among those paths.

3D Path. Typically data from the host CPU looks very
much like the OpenGL API functions themselves. Data
following this first path is routed to the geometry chips.
The geometry chips process the data and return the re-
sults to the interface chip. These results are then sent on
to the texture chips or directly to the raster chips if the
texture mapping subsystem is not installed. In either case
the data is transmitted to and through all the texture and
raster chips in the system.

Unbuffered Path. This path passes data directly through
the interface chip to the texture and raster chips. This
provides a bypass method that allows traffic to get around

other pending operations. An example would be a texture
cache download that is required to complete a primitive
that is currently being rasterized, a situation that would
lead to deadlock without the unbuffered path.

2D Path. This path runs directly through the interface chip
to the texture and raster chips. The 2D path differs from
the unbuffered path in the way its priority is handled. The
interface chip manages priority among the three paths as
they all converge on the same set of wires between the
interface chip and the first texture chip. The unbuffered
path goes directly through the interface chip to those
wires and has priority over the other two paths. Data
targeting the 2D path is held off until all preceding 3D
work in the geometry chip has been flushed through to
the first texture chip.

31 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

There is also special circuitry in the interface chip that is
used to accelerate many operations commonly done by
X11 or other 2D APIs.

Buses

The three primary buses in the system are each run at
200 MHz, allowing sustainable transfer rates of more
than 800 Mbytes per second. To control the loading on
the interconnections for these buses, they are built as
point-to-point connections from one chip to the next.

Each chip receives the signals and then retransmits them
to the next chip in the sequence. This requires more pins
on each part, but limits the number of loads on each wire
to a single receiver as well as limiting the wiring length
that signals must traverse. This allows for reliable com-
munications despite the high frequency of the buses.

The first of these three buses distributes work to the
geometry chips. This bus starts at the interface chip
and runs through all the geometry chips in the system.
Each geometry chip monitors the data stream as it flows
through the bus and picks off work to operate upon based
on an algorithm that selects the least busy geometry chip.

The second of these buses starts at the last geometry chip
and passes through the others back to the interface chip.
The results of the work done by the geometry chips is
placed on this bus in the same sequence as it was moved
along the first bus. This strict ordering control prevents
certain artifacts from showing up in the final image.

The third bus ties the interface chip to the texture and
frame buffer subsystems. It is wired in a loop that goes
back to the interface chip from the last chip in the chain.
3D operations typically flow from the interface chip to
the chips along this bus, and when they eventually get
back to the end of the loop, they are thrown away.

For 2D operations, such as moving blocks of pixels
around the frame buffer, the operation of the third bus is
somewhat different. The movement of pixel data operates
as a sequence of reads followed by a sequence of writes.
The reads cause data to be dumped from the frame buffer
locations onto the bus and the results travel back to the
interface chip. This data is then associated with new
addresses and sent as writes back down the bus, ending
up back at the frame buffer but in different locations.

Besides the three primary buses mentioned above,
there are three secondary buses in the system. The first

bus connects the interface chip to the video chip. This
provides video control, download of color maps, and
cursor control. The second bus is a connection from each
raster chip to the video chip. This path is used to provide
video refresh data to display frame buffer contents. The
final secondary bus is a connection from each texture
chip to two of the raster chips. This path allows the flow
of filtered texture data into the raster chips for combina-
tion with nontexture fragment data.

Geometry Chip

The geometry and lighting chips are responsible for taking
in geometric primitives (points, lines, triangles, and quad-
rilaterals) and executing all the operations associated
with the transform stage of the graphics pipeline (see the
article on page 9 for more about the graphics pipeline).
These operations include:

� Transformation of the coordinates from model space to
eye space

� Computing a vertex color based on the lighting state,
which consists of up to eight directional or positional
light sources

� Texture map calculations that include:

� Environment map calculations for texture mapping

� Texture coordinate transformation

� Linear texture coordinate generation

� Texture projection

� View volume clipping and clipping against six arbitrary
application-specified planes to determine whether a
primitive is completely visible, rejected because it is
completely outside the view area, or needs to be
reduced into its visible components

� Perspective projection transformation to cause
primitives to look smaller the further away from
the eye they are

� Setup calculations for rasterization in the raster chip.

There were some interesting problems to solve in the
design of the distribution and coalescing of work up and
down the geometry chip daisy chain. For example, load
balancing, maintaining strict order in the output stream,
and ensuring that operations, such as binding of colors
and normals to vertices, perform as required by OpenGL.

32 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Fast Virtual Texturing

Texture mapping, which is wrapping a picture over a three
dimensional object, has been used over the years as a key
feature to enhance photorealism, reduce data set sizes, per-
form visual analysis, and aid in simulations (see Figure 1).
Since texturing calculations are computationally expensive
and memory access for large textures can be prohibitively
slow, various workstation graphics vendors have provided
hardware-accelerated texture mapping as a key differentiator
for their product.

A primary drawback of these attempts at hardware accelera-
tion is that dedicated local hardware texture memory is limited

Figure 1

A 3D textured skull. The VISUALIZE fx4 and fx6 subsystems
support a texture map acceleration option. Pictured here
is the use of 3D texture mapping OpenGL extensions with
this option. This feature allows visualization of 3D data
sets such as MRI images.

in size and is expensive. To take advantage of the perfor-
mance boost, graphics applications were constrained to tex-
tures that fit in the local hardware texture memory. In other
words, the application was responsible for managing this
hardware resource.

Noticing this obvious artificial application limitation in texturing
functionality, performance, and portability, Hewlett-Packard
introduced, in the VISUALIZE-48, a new concept in hardware
texture mapping called virtual texture mapping. Virtual texture
mapping uses the dedicated local hardware texture memory
as a true texture cache, swapping in and out of the cache the
portions of textures that are needed for rendering a 3D image.
Thus, for texturing applications, these limitations were elimi-
nated. The application could define and use a texture map of
any size (up to a theoretical limit of 32K texels × 32K texels*)
that would be hardware accelerated, eliminating the need for
the application to be responsible for managing local texture
memory.

Using the local hardware texture memory as a cache also
means that this memory uses only the portions of the texture
maps needed to render the image. This efficiency translates
to more and larger texture maps being hardware accelerated
at the same time. Applications that previously could not run
because of texture size limits can now run because of the
unlimited virtual texture size. Also, with only the used por-
tions of the texture map being downloaded to the cache, far
less graphics bus traffic occurs.

The system design of virtual texture mapping involved changes
in the HP-UX operating system to support graphics interrupts,
onboard firmware support for these interrupts, the introduction
of an asynchronous texture interrupt managing daemon pro-
cess, and the associated texturing hardware described in this

*A texel is one element of a texture.

The output of the geometry chip’s daisy chain is passed
back through the interface chip. Generally, for triangle
based primitives, the output takes the form of plane equa-
tions. As these floating-point plane equations are returned
from the geometry chip to the interface chip and passed
on to the texture chips, certain addressed locations in the
interface chip will result in the floating-point values being

converted to fixed-point values as they pass through.
These fixed-point values are in a form the raster chips
need to rasterize the primitive.

The daisy-chain design allows up to eight of the geometry
chips to be used although only three are applied in the
case of the VISUALIZE fx6 product at this time.

33 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Figure 2

 A shadow texture image.

Figure 3

 A specular lit texture image. Correct specular lighting of
textured images can be achieved with VISUALIZE fx4 and
fx6 texture mapping options.

article. Having a centralized daemon process manage the
cache allows for cache efficiency, parallel handling of texture
downloads while 3D graphics rendering is occurring, and shar-
ing textures among graphics contexts.

The VISUALIZE fx4 and VISUALIZE fx6 texture mapping
options incorporate the second generation advances in virtual
texture mapping. Full OpenGL 1.1 texture map hardware sup-
port has brought about dramatic improvements in texture
map download performance and switching between texture
maps and new extended features such as 3D texture mapping,
shadows (Figure 2), and proper specular lighting on textures

(Figure 3). These features have made these products very
appealing systems for texturing applications on workstation
graphics.

The texture mapping performance on these systems is very
competitive. The VISUALIZE fx6 texture fill rate is about twice
that of the VISUALIZE fx4 texture option. However, fill rates
alone do not describe how these systems perform in a true
application environment. Aggressive texture mapping applica-
tion performance comparisons show two to three times per-
formance superiority over similarly priced graphics workstation
products.

Texture Chip

The texture chip is responsible for accelerating texture
mapping operations. Towards this end, it performs three
basic functions:

� Maintains a cache of texture map data, requesting cache
updates for texture values required by current rendering
operations as needed (see “Fast Virtual Texturing” on
page 32)

� Generates perspective corrected texture coordinates
from plane equations representing triangles, points, or
lines

� Fetches and filters the texture data as specified by the
application based on whether the texture needs to be
magnified or minimized to fit the geometry it is being
mapped to and passes the result on to the raster chips.

34 May 1998 • The Hewlett-Packard JournalArticle 4 • 1998 Hewlett Packard Company

Raster Chip

The raster chip rasterizes the geometry into the frame
buffer. This means it determines which pixels are to be
potentially modified and, if so, whether they should be
modified based on various current state values (including
the contents of the z buffer). The raster chip also controls
access to the various buffers that make up the frame
buffer. This includes the image buffer for storing the image
displayed on the screen (potentially two buffers if double
buffering is in effect), an overlay buffer that contains im-
ages that overlay the image buffer, the depth or z buffer
for hidden surface removal, the stencil buffer,* and an
alpha buffer** on the VISUALIZE fx6. To accomplish its
work the raster chip performs four basic functions:

� Rasterize primitives described as points, lines, or
triangles

� Apply fragment operations as defined by OpenGL (such
as blending and raster operations)

� Control of and access to buffer memory, including all
the buffers described earlier

� Refresh the data stream for the video chip, including
handling windows and overlays.

Video Chip

The video chip provides video functions for controlling
the data flow from the frame buffer to the display and

* A stencil buffer is per pixel data that can be updated when pixel data is written and used
to restrict the modification of the pixel.

** An alpha buffer contains per pixel data that describes coverage information about the
pixel and can be used when blending new pixel values with the current pixel value.

mapping data from values to color. The features of the
video chip include:

� Data mapping to colors:

� Two independent 4096-by-24-bit lookup tables

� Four independent 256-by-3-by-8-bit lookup tables
for image planes

� A bypass path for 24-bit true color data

� Two independent 256-by-8-bit lookup tables for
overlay planes

� Digital-to-analog conversion

� Video timing

� Video output.

Conclusion

The VISUALIZE fx family of products currently has a sub-
stantial lead in not only price/performance measurements,
but it also leads in performance independent of cost.

For information regarding how these systems compare
against the competition, visit the SPEC (an industry stan-
dard body of benchmarks) web page at:

http://www.spec.org/gpc

Acknowledgments

We would like to thank Paul Martz for the shadow texture
image (Figure 2 on page 33).

��� �� 	����

Noel Scott is a senior

engineer at the HP Work-

station Systems Division.

He is responsible for product definition,

performance projections, and modeling. He

designed the I/O bus for the geometry chip

described in the article. He came to HP in

1981 after receiving a BS degree in computer

engineering from the University of Kansas.

����� �� ����

A software engineer in

the graphics products

laboratory at the HP

Workstation Systems Division, Daniel Olsen

is responsible for the development of new 3D

products for HP workstations. He has been

with HP since 1994. He has a BSEE degree

(1991) from North Dakota State University

and an MS degree in computer engineering

(1997) from Iowa State University. Daniel

was born in Des Moines, Iowa, is married and

has two daughters. His leisure time activities

include skiing, home projects, scuba diving,

and aviation.

�����
� ������

Ethan Gannett is a lead

engineer for graphics

software development

at the HP Workstation Systems Division. He

came to HP in 1988 after receiving an MS

degree in computer science from Iowa State

University. He also holds a BS degree in

physics (1983) and a BS degree in astronomy

(1983) from the University of Iowa. Born in

Davenport, Iowa, he is married and has one

daughter. He enjoys kayaking, backcountry

camping, telemarking, and hiking.

http://www.spec.org/gpc
http://www.hp.com/hpj/98may/ma98a4.htm
http://www.hp.com/hpj/journal.html

35 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

HP Kayak: A PC Workstation with Advanced
Graphics Performance

World-leading 3D graphics performance, normally only found in a UNIX

workstation, is provided in a PC workstation platform running the Windows

NT operating system. This system was put together with a time to market of

less than one year from project initiation to shipment.

Computer graphics workstations are powerful desktop computers used

by a variety of technical professionals to perform their day-to-day work.

Traditionally, such computers have run with a version of the UNIX operating

system. In the past year, however, workstations featuring Intel processors such

as the Pentium Pro and Pentium II and running the Microsoft Windows NT

operating system have begun to gain ground in both capability and market

share. Hewlett-Packard has historically been a leader in the UNIX workstation

business. In February, 1997, Hewlett-Packard began a project to put its high-

performance workstation graphics into a PC workstation platform.

Technical Challenges

Fitting HP workstation graphics into a Windows NT platform was not an easy

task. The task was made more exciting with the addition of schedule pressure.

The schedule gave us only four months to reach functional completion and

only two months after that to finish the quality assurance process. This schedule

was made even more challenging because the hardware was not yet complete.

It was difficult at times to distinguish software defects from hardware defects.

This article describes how we overcame some of the challenges we encountered

while implementing this project.

The Hardware

The hardware for the HP Kayak workstation (Figure 1) is based on the

VISUALIZE fx4 graphics subsystem for real-time 3D modeling (see the article

on page 28). However, a couple of changes were necessary. First, to achieve

�	

 �� �������

�	

 �� �������

A senior software engineer

at the HP Performance

Desktop Computing Opera-

tion, Ross Cunniff has been with HP since 1985.

He was the lead software engineer for the 3D

device driver used in the HP Kayak workstation.

He continues to be the lead 3D device driver

engineer for high-end graphics products. He

received a BS degree in mathematics and a BS

degree in computer science in 1985 from the

University of New Mexico. His professional

interests include computer graphics, particu-

larly 3D hardware acceleration.

36 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

Figure 1

An HP Kayak XW workstation.

the performance available in the graphics hardware, the
bus interface had to be changed from the standard Periph-
eral Component Interconnect (PCI) to the accelerated
graphics port (AGP),† since no commodity PC chipset
supported PCI 2X. With normal industry-standard PCI, we
would have been limited to 132 Mbytes/s for I/O, which
would have hurt our performance on several important
benchmarks. With the accelerated graphics port, the avail-
able I/O bandwidth increased to 262 Mbytes/s.

The second change necessary to the hardware was the
addition of industry-standard VGA graphics. During the

† AGP is a bus that transfers data to and from a graphics accelerator.

boot process of Windows NT, and at occasional intervals
after that, the computer will access VGA graphics registers
directly. To achieve this, a VGA daughtercard was created
that displays its graphics through the video feature connec-
tor created for the UNIX video solution. The main graphics
board was modified slightly, making it possible to dynami-
cally switch between VGA graphics and VISUALIZE fx4

graphics. Figure 2 shows a hardware block diagram for
an HP Kayak workstation.

Windows NT Driver Architecture

The fact that the hardware for the HP Kayak workstation
is similar to the VISUALIZE fx4 hardware, which runs the
UNIX operating system, made the software effort much
easier. However, many significant hurdles had to be over-
come to get the software running under Windows NT.

The first challenge was the Windows NT device driver
architecture (Figure 3). On HP-UX*, graphics device
drivers have a large amount of kernel support, allowing
them to access the graphics hardware directly from user-
level code without having to execute any special locking
routines. This direct hardware access (DHA) method is
not present on Windows NT. Instead, all accesses to the
hardware must be performed from the kernel (ring 0 in
Figure 3).

Figure 2

A hardware block diagram for an HP Kayak workstation.

VISUALIZE fx4

Graphics
Accelerator

Intel 440LX
AGP Controller

128M Bytes to
512M Bytes
of Memory

Integrated Peripheral
Controller (USB,

CD-ROM, Keyboard,
ISA Slots, etc.)

PCI Slots

Pentium II
Processor

Optional
Pentium II
Processor

Memory BusAGP Bus

PCI Bus

CPU Bus

37 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

Fortunately, the VISUALIZE fx4 architecture specifies a
buffered form of communication in which graphical com-
mands are placed into command data packets in a large
buffer in the hardware. It was a simple task to modify the
HP-UX drivers to access a software allocated command
data packet buffer instead. When one of these software
buffers gets full, it is passed to the ring 0 driver that for-
wards the buffer to the hardware.

The lighter-shaded modules in Figure 3 represent the
libraries that were delivered by HP to support the VISU-
ALIZE fx4 hardware. The libraries in ring 3 (Hpicd.dll and
Hpvisxdx.dll) were fairly straightforward ports of the
corresponding UNIX libraries libGL.sl and libddvisxgl.sl.
The libraries in ring 0 (Hpvisxmp.sys, Hpvisxnt.dll, and
Hpvisxkx.dll) had to be created from scratch to support the

Figure 3

The Windows NT device driver architecture.

Graphical Device Interface (Gdi32.dll)

Display Driver
(Hpvisxnt.dll)

Miniport Driver
(Hpvisxmp.sys)

Visualize fx4 Hardware

Device-Specific Module
(Hpvisxdx.dll)

Device-Independent
Module

(Hpicd.dll)

Opengl32.dll

OpenGL Application

OpenGL
Escapes

(Hpvisxkx.dll)

W
in

do
w

s
M

an
ag

em
en

t (
M

en
us

, B
ut

to
ns

, e
tc

.)

G
eo

m
et

ry
 A

cc
el

er
at

or
St

re
am

lin
es

Ri
ng

 0
 (K

er
ne

l S
pa

ce
)

Ri
ng

 3
 (U

se
r S

pa
ce

)

Windows NT driver model. These modules make up about
30 percent of the size of the ring 3 modules.

Integration with 2D Windows NT Graphics

The second challenge was to integrate the 3D OpenGL
graphics support with the standard Windows NT graphical
device interface. Microsoft specifies two methods that can
be used to do this. The first, called a miniclient driver, is
a rasterization-level OpenGL driver that uses the Micro-
soft OpenGL software pipeline for lighting and trans-
formation. This driver would have been easy to create,
but it would not have allowed us to take advantage of
the hardware transformation and lighting provided by
VISUALIZE fx4.

The second method, called an installable client driver, is
a geometry-level OpenGL driver that leaves implementa-
tion of the lighting and transformation pipeline up to the
driver writer. The driver allows us full access to all
OpenGL API routines. This is the route we chose be-
cause we already had a full implementation of OpenGL,
which we had created to run on the HP-UX operating
system. This implementation was ported to the installable
client driver model over a span of several weeks, while
we added support for Windows NT multithreading. The
bulk of the VISUALIZE fx4 graphical device interface
driver was written by a separate team of experts without
much consideration for 3D graphics acceleration. This
enabled them to get the Windows NT display driver run-
ning in a short amount of time and allowed them to con-
tinue enhancing 2D performance without severely im-
pacting the 3D device driver team. Some of the results of
these efforts are shown in Figure 4.

Integrating the Windows NT Driver with Ring 0

A third challenge was to integrate the Windows NT driver
with the ring 0 portion of the OpenGL driver while main-
taining separate code bases for the different teams. We
decided to make our ring 0 driver a separately loadable
library. This decision kept the source code separate. It
enabled much faster edit-compile-debug cycles, since it
allowed us to replace a portion of the ring 0 driver with-
out having to reboot the computer. However, the separa-
tion added extra complexity because we had two very
different drivers accessing the same piece of hardware.
To solve this problem, we created a variable called a
hardware access token. Each driver has a special token

38 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

Figure 4

(a) A 3D image in a 2D environment. (b) Several 3D programs in a 2D environment.

(a)

(b)

39 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

that it places in the hardware access token to indicate
that it was the last driver to access the hardware. When a
driver detects that the token is not its own, it executes
procedures known as context save and context restore.
The context save reads all applicable hardware state in-
formation from the device into software buffers. The con-
text restore places the previously saved state back into
the hardware. This same mechanism is used to mediate
hardware accesses between different processes running
OpenGL.

Integration of VISUALIZE fx4 Architecture

A fourth challenge for the team was the integration of the
VISUALIZE fx4 stacked planes architecture (Figure 5a)

Window A

Window B

Window A

Window B

Figure 5

(a) VISUALIZE fx4 stacked frame buffer model. (b) Windows
NT offscreen frame buffer model.

Window B
Back Buffer

Window A
Back Buffer

Window A
Z Buffer

Window B
Z Buffer

Offscreen Memory

Display Buffer

Window A

Window B

Window A

Window B

Z Buffer

Buffer 1

Buffer 0

(a)

(b)

into the Windows NT environment. Workstations tradi-
tionally have very deep pixels, each pixel having up to
90 bits of information. This information includes support
for such things as transparent overlays, double buffering,
hidden surface removal, and clipping. Windows NT expects
a slightly different model, in which the extra per pixel
information is allocated in offscreen storage when a 3D
rendering context is created (Figure 5b). What this means
is that when the window state is changed (for example,
when a window is moved on the desktop), Windows NT
does not make any special calls to the device driver. This
presented a problem, since our stacked planes architec-
ture needs to keep all of the extra information directly
associated with the correct visible screen pixels.

To fix this problem, we used a Windows mechanism
called a window object (Figure 6). The window object
tracks a window state and executes callbacks into our
driver when a window state is modified. This added an
unfortunate amount of complexity into our driver, since
the window state is asynchronous to all other hardware
accesses and not all of the window state information we
need was directly available to us. In addition, applications
expect to be able to mix Windows NT graphical device
interface rendering and 3D OpenGL rendering in the same
window. These two problems required us to add a double

Figure 6

The components of a window object.

OpenGL Context
Information

(State Pointers,
Context Save Area,

etc.)

WNDOBJ
Window State

Object

WNDOBJ Callbacks
• Move Buffers
• Paint Attributes
• Establish Clipping

Window State
Changes

(Move, Resize, Hide,
etc.)

40 May 1998 • The Hewlett-Packard JournalArticle 5 • 1998 Hewlett Packard Company

buffering mechanism that actually copies the physical
back buffer bits into the displayed front buffer. This is
significantly slower than the native per pixel double buff-
ering of VISUALIZE fx4. However, it fits better into the
Windows NT model and enables all applications to run.
We still enable the native method for applications and
benchmarks that work correctly with it, since it is signifi-
cantly faster.

Performance

A fifth challenge for the team was performance. In the
graphics workstation market, performance is usually the
main differentiator. The most popular single measure of
performance in the PC graphics market is the OPC View-
perf benchmark known as CDRS-03.1 By July, 1997, we
had achieved a CDRS-03 rating of 74—a performance
level that exceeded all known competitors. This met our
goals set at the beginning of the project. However, we
were aware that the hardware was capable of supporting
much higher performance. With a goal in mind of a SIG-
GRAPH 97 announcement in August, we redesigned the
device driver. The redesign optimized certain paths
through the driver, enabling much higher performance
for this benchmark and for important applications such as
Unigraphics and Structural Dynamics Research Corpora-
tion (SDRC). As a result, we were able to announce a
CDRS-03 rating of over 100 at SIGGRAPH 97.

In addition to benchmark performance, the team focused
on application performance because it is typically this
measure that determines whether a customer will buy the
product. We obtained a variety of in-house applications

and built up expertise in running the applications. We
also obtained data sets that represented typical customer
workloads and adjusted various performance parameters
(such as display list size) to maximize performance for
the benchmark. Using this technique, the performance
with some data sets was up to 100 times faster.

Conclusion

With VISUALIZE fx4, Hewlett-Packard has the fastest
Windows NT graphics on the market.1,2,3 Integrated into
the HP Kayak XW platform, the graphics device and its
successors will help Hewlett-Packard maintain its market
leadership.

References

1. CDRS (CDRS-03) Results, OpenGL Performance Characteriza-
tion Project:

http://www.specbench.org/gpc/opc/opc.cdrs.html

2. Advanced Visualizer (AWadvs-01) Results, OpenGL Perfor-
mance Characterization Project:

http://www.specbench.org/gpc/opc/opc.AWadvs.html

3. Data Explorer (DX-03) Results, OpenGL Performance
Characterization Project:

http://www.specbench.org/gpc/opc/opc.dx.html

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura-
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft, MS-DOS, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Pentium is a U.S. trademark of Intel Corporation.

http://www.specbench.org/gpc/opc/opc.cdrs.html
http://www.specbench.org/gpc/opc/opc.AWadvs.html
http://www.specbench.org/gpc/opc/opc.dx.html
http://www.hp.com/hpj/98may/ma98a6.htm
http://www.hp.com/hpj/journal.html

41 May 1998 • The Hewlett-Packard JournalArticle 6 • 1998 Hewlett Packard Company

Concurrent Engineering in OpenGL Product
Development

Time to market was reduced when tasks that had been traditionally serialized

were completed in parallel.

Concurrent engineering is the convergence, in time and purpose, of

interdependent engineering tasks. The benefits of concurrent engineering

versus traditional serial dependency are shown in Figure 1. Careful planning

and management of the concurrent engineering process result in:

� Faster time to market

� Lower engineering expenses

� Improved schedule predictability.

This article discusses the use of concurrent engineering for OpenGL product

development at the HP Workstation Systems Division.

OpenGL Concurrent Engineering

We applied concurrent engineering concepts in the development of our

OpenGL product in a number of ways, including:

� Closely coupled system design with partner laboratories

� Software architecture and design verification

� Real-use hardware verification

� Hardware simulation

� Milestones and communication

� Joint hardware and software design reviews

� Test programs written in parallel.

��
�� �� ���
�

�� �
���	 ���	���

��
�� �� ���
�

A senior engineer in the

graphics products labora-

tory at the HP Workstation

Systems Division, Robert Casey was the chief

software architect for the OpenGL product.

Currently, he leads the efforts on Direct 3D

technology in the graphics products laboratory.

He came to HP in 1987 after receiving a BS de-

gree in computer engineering from Ohio State

University. He was born in Columbus, Ohio,

is married and has two children. His outside

interests include skiing, soccer, and wood-

working.

�� �
���	 ���	���

Leonard Lindstone is a

project manager at the HP

Workstation Systems Divi-

sion. He is responsible for software drivers for

new graphics hardware. He joined HP in 1976

at the Calculator Products Division after earn-

ing a BSEE degree from the University of Colo-

rado. He also has an MS degree in computer

science from Colorado State University. Leon-

ard is married and has three children. He en-

joys music of all kinds and historical fiction.

42 May 1998 • The Hewlett-Packard JournalArticle 6 • 1998 Hewlett Packard Company

Cultural Enablers

In addition to these technical tactics, the OpenGL team
enjoyed the benefits of several cultural enablers that have
been nurtured over many years to encourage concurrent
engineering. These include early concurrent staffing, an
environment that invites, expects, and supports bottoms-up
ideas to improve time to market, and the use of a focused
program team to use expertise and gain acceptance from
all functional areas and partners.

System Design with Partner Labs

We worked closely with the compiler and operating sys-
tem laboratories to design new features to greatly im-
prove our performance (see the “System Design Results”
section in the article on page 9). Our early system design
revealed that OpenGL inherently requires approximately
ten times more procedure calls and graphics device ac-
cesses than our previous graphics libraries. This large
increase in system use meant we had to minimize these
costs we previously had been able to amortize over a
complete primitive.

We worked closely with our partner laboratories to ensure
success. Our management secured partner acceptance,
funding, and staffing, and the engineers worked on the
joint system design. Changes of this magnitude in the
kernel and the compiler take time, and we could not af-
ford to wait until we had graphics hardware and software
running for problems to occur. Rather, we used careful
system performance models and competitive performance
projections to create processor state count budgets for
procedure calls and device access. These performance
goals guided our design. In fact, our first design to improve
procedure call overhead missed by a few states per call,
so we had to get more creative with our design to arrive
at an industry-leading solution. We managed these de-
pendencies throughout the project with frequent commu-
nication and interim milestones.

Software Architecture and Design Verification

We designed and followed a risk-driven life cycle. To sup-
port the concurrent engineering model, we needed a life
cycle that avoided the big bang approach of integrating all

Figure 1

Concurrent Engineering

System
Qualification

Driver and API
Design

Board
Design

Chip
Design

System
Design

Simulated System
Qualification

Operating System
Design

Compiler
Design

System
Design

Chip
Design

Board
Design

System
Qualification

Driver and API
Design

Reduce Time from First Silicon to Manufacturing Release

Traditional Serial Dependencies

The benefits of concurrent engineering.

43 May 1998 • The Hewlett-Packard JournalArticle 6 • 1998 Hewlett Packard Company

Figure 2

OpenGL concurrent engineering techniques.

Simple
Demonstration

Spool
Files

Vertical Slice
(Graphics
Software)

Fast
Procedure

Calls

Fast
Device
Access

Simple
Demonstration Application

Old Device
Driver

VISUALIZE fx
Driver

Old
Hardware

VISUALIZE fx
Hardware
Simulator

VISUALIZE fx
Hardware

OpenGL OpenGL

OpenGL Turn
On (Graphics
Software and

Hardware)

System Turn On
(Graphics Soft-
ware and Hard-
ware, Compiler,

Kernel)

O
pe

nG
L

VISUALIZE fx
Driver

the pieces at the end. This would result in a longer and
less predictable time to market. Instead, we created a
prototyping environment. This environment was initially
created to test the software architecture and early design
decisions. The life cycle included a number of check-
points focused on interface specification, design, and
prototyping.

One key prototyping checkpoint in this environment is
what we called our “vertical slice,” which represented a
thin, tall slice through the early OpenGL architecture (see
Figure 2). Thin because it supports a small subset of the
full OpenGL functionality, and tall because it exercises all
portions of the software architecture, from the API to the
device driver-level interface. With this milestone, we had
a simple OpenGL demonstration running on our software
prototype.

The objectives of this vertical slice were to verify the
OpenGL software architecture and design, create a proto-
typing design environment, and rally the team around this
key deliverable.

Hardware Verification

Before we had completed verification of the software ar-
chitecture, it became evident that this same environment
needed to be quickly adapted and evolved to handle the
demands of hardware verification. OpenGL features and
performance represented the biggest challenge for the
new VISUALIZE fx hardware. Although this hardware
would also support our legacy APIs (Starbase, PHIGS,
PEX), most of the newness and therefore risk was con-
tained in our support of OpenGL. By evolving our proto-
typing environment for use as the hardware verification
vehicle, we were able to exercise the hardware model in
real-use scenarios (albeit considerably slower than full
performance).

Evolving this environment for hardware verification re-
quired us to take the prototyping further than we would
have for software verification alone. We had to add more
functionality to more fully test the OpenGL features in
hardware. We also had to do so quickly to avoid delaying
the hardware tape release.

This led to our second key prototyping checkpoint, which
we called “OpenGL turn on.” This milestone included the
same OpenGL demonstration running on the VISUALIZE
fx hardware simulator. We also added functionality
breadth to the vertical slice (see Figure 2). Doing all this
for a new OpenGL API represented a new level of concur-
rent engineering, in that we were running OpenGL pro-
grams on a prototype OpenGL library and driver and dis-
playing pictures on simulated VISUALIZE fx hardware, all
more than a year before shipments.

The key objective of this milestone was to verify system
design across the API, driver, operating system, and hard-
ware. The system generated pictures and, more impor-
tantly, spool files (command and data streams that cross
the hardware and software interface). These spool files
are then run against the hardware models to verify hard-
ware design under real OpenGL use scenarios.

This prototyping environment has the following
advantages:

� Reduces risk for system design and component design

� Resolve integration issues early

44 May 1998 • The Hewlett-Packard JournalArticle 6 • 1998 Hewlett Packard Company

� Identify holes and design or architecture flaws

� Enable prototyping to evaluate design alternatives

� Enables key deliverables (hardware verification spool
files)

� Creates exciting focal points for developers

� Fosters teamwork

� Enables joint development

� Provides a means to monitor progress

� Provides a jump start to our code development phase.

This environment also has potential downsides. We felt
there was a risk that developers would feel that the need
or desire to prototype (for system turn on and hardware
verification) could overshadow the importance of product
design. We did not want to leave engineers with the model:
write some code, give it a try, and ship it if it works.

Thus, to keep the benefits of this environment and miti-
gate these potential downsides, we made a conscious de-
cision to switch gears from system turn on and prototype
mode to product code development mode. This point
came after we had delivered the spool files required for
hardware verification and before we had reached our
design complete checkpoint. From that point on, we
prototyped only for design purposes, not for enabling
more system functionality. We also created explicit check-
points for replacing previously prototyped code with
designed product code. This was an important shift to
avoid shipping prototype code. All product code had to
be designed and reviewed.

Hardware Simulation

One key factor in our concurrent engineering process is
hardware simulation. A detailed discussion of the hard-
ware simulation techniques used in our project are be-
yond the scope of this article. Briefly, we use three levels
of hardware simulation:

� A behavioral model (written in C)

� A register transfer level model (RTL)

� A gate model, which models the gate design and imple-
mentation.

The advantages of the behavioral model are that it can be
done well before the RTL and gate model so we can use it
with other components and prototypes. The behavioral

model is also significantly faster than the other models
(though still about 100 times slower than the real product),
allowing us to run many simple real programs on it. The
RTL model runs in Verilog and runs about one million
times slower than the real product. This limits the number
and size of test cases that can be run. The gate model is
even slower. Even so, we kept over 30 workstations busy
around the clock for months running these models. Often
a simulation run will use C models for all but one of the
new chips, with the one chip being simulated at the gate
level.

Milestones and Communication

We set up a number of R&D milestones to guide and track
our progress. The vertical slice and OpenGL turn on were
two such key milestones. OpenGL developer meetings
were held monthly to make sure that everyone had a clear
understanding of where we were headed and how each of
the developers’ contributions helped us get there.

Software and Hardware Design Reviews

The hardware and software engineers also held joint de-
sign reviews. The value of design reviews is to minimize
defects by enabling all the engineers to have the same
model of the system and to catch design flaws early and
correct them while defect finding and fixing is still inex-
pensive in terms of schedule and dollars.

On the software side, the review process focused heavily
on up-front design reviews (where changes are cheaper)
to get the design right. We maintained the importance of
doing inspections but reduced the inspection coverage
from 100 percent to a smaller representative subset of
code, as determined by the review team. We also in-
creased the number of reviewers at the design reviews and
reduced the participation as we moved to code reviews.
We maintained a consistent core set of reviewers who
followed the component from design to code review.

Tests Written in Parallel

To bring more parallelism to the development process,
we had an outside organization develop our OpenGL test
programs. By doing so, we were able to begin nightly
regression testing simultaneous with the code completion
checkpoint because the test programs were immediately
available. Historically, the developers have written the
tests following design and coding. This translates into

45 May 1998 • The Hewlett-Packard JournalArticle 6 • 1998 Hewlett Packard Company

a lull between the code completion checkpoint and the
beginning of the testing phase.

Parallel development of the tests with the design and
implementation of the system was a key success factor
in our ability to ship a high-quality, software-only beta
version of our OpenGL product. No severe defects were
found in this beta product—our first OpenGL customer
deliverable.

One thing we learned from using an outside organization
to help with test writing was that writing test plans is
more a part of design than of testing. The developers,
with intimate knowledge of the API and the design, were
able to write much more comprehensive test plans than
the outside organization.

Conclusion

We achieved several positive results through the use of
concurrent engineering on our OpenGL product. Ulti-
mately, we reduced time to market by several months.
Along the way, we made performance and reliability im-
provements in our software and hardware architectures
and implementations, and we likely prevented a chip turn
or two, which would have cost significant time to market.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

Direct 3D is a U.S. registered trademark of Microsoft Corporation.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/journal.html

46 May 1998 • The Hewlett-Packard JournalArticle 7 • 1998 Hewlett Packard Company

Advanced Display Technologies on HP-UX
Workstations

Multiple monitors can be configured as a contiguous viewing space to

provide more screen space so that users can see most, if not all, of their

applications without any special window manipulations.

In today’s computing environment, screen space is at a premium. The

entire screen can be easily consumed when primary work-specific applications

are used together with browsers, schedulers, mailers, and editors. This forces

the user to continuously shuffle windows, which is both distracting and

unproductive.

The advanced display technologies described here allow users to increase

productivity by reducing the time spent manipulating windows. Three

technologies are discussed:

� Multiscreen

� Single logical screen (SLS)

� SLSclone.

Implementation details and procedures for configuring HP-UX workstations to

use the SLS technology are described in references 1 and 2.

Multiscreen

When considering the problem of limited screen space, one solution that

comes to mind is to use a bigger monitor with a higher resolution.

Unfortunately, it is often impractical to add a monitor with a resolution high

enough to accommodate all the data a user wants to view. Although demand has

increased for monitors of higher resolution, such as 2K by 2K pixels, they are

still too expensive for companies to place on every desktop. In addition, these

	��� �� �����

�
�� �� �������

�
��� �� �����

47 May 1998 • The Hewlett-Packard JournalArticle 7 • 1998 Hewlett Packard Company

large monitors are cumbersome and heavy. There are also
safety considerations: the monitor must be stable and
properly supported.

A more practical, cost-effective solution is to use addi-
tional standalone monitors to increase the amount of
visible screen space. The X Window System (X11) stan-
dard incorporates a feature known as multiscreen, which
provides this type of environment. In multiscreen configu-
rations, a single X server is used to control more than one
graphics device and monitor simultaneously. These types
of configurations are only possible on systems containing
multiple graphics devices.

In these multiscreen scenarios, a single mouse and key-
board are shared between screens. This allows the pointer
but not the windows to move between screens. Each ap-
plication must be directed to a specific screen to display
its windows. This is done by either using the –display com-
mand line argument or by setting the DISPLAY environ-
ment variable.

Figure 1 shows a two-monitor multiscreen configuration.
Both monitors are connected to the same workstation and
are controlled by the same X server. This type of configu-
ration effectively doubles the visible workspace. For exam-
ple, users could have their alternate applications, such as
web browsers, mailers, and schedulers on the left-hand
monitor and their primary applications on the right-hand
monitor. Since the X server controls both screens, the
pointer can move between screens and be used with any
application.

Multiscreen offers the advantage that it will work with
any graphics device. There are no constraints that the
graphics devices be identical or have the same properties.

Figure 1

A multiscreen configuration.

display:0.0 display:0.1

SPU with Two
Graphics Cards

Figure 2

Cursor wraparound in a multiscreen configuration.

Screen 1 Screen 2 Screen 3

Screen 1 Screen 2 Screen 3

(a)

(b)

For example, on an HP 9000 Model 715 workstation con-
taining an HCRX24 display (a 24-plane device) and an
internal color graphics display (an 8-plane device), the user
can still create a multiscreen configuration. Of course,
those applications directed to the HCRX24 will have ac-
cess to 24 planes while those contained on the other are
limited to 8 planes. Currently, the HP-UX X server allows
a maximum of four graphics devices to be used in a multi-
screen configuration.

The HP-UX X server also provides several enhancements
to simplify the use of a multiscreen configuration. If a user
has a 1-by-3 configuration (Figure 2a), there may be a
need to move the pointer from screen 3 to screen 1. This
requires moving the pointer from screen 3 to screen 2 to
screen 1. By specifying an X server configuration option,
the user can move the pointer off the right edge of screen
3, and the pointer will wrap to screen 1 (Figure 2b). The
same screen wrapping functionality can be provided if the
user has configured the screens in a column. Finally, a
2-by-2 configuration can contain both horizontal and verti-
cal screen wrapping.

Although multiscreen is convenient, it has shortcomings.
Namely, the monitors function as separate entities, rather
than as a contiguous space. The different screens within a
multiscreen configuration cannot communicate with one
another with respect to window placement. This means
that windows cannot be moved between monitors. Once
a window is created, it is bound to the monitor where it is
created. Although some third-party solutions are available
to help alleviate this problem, they are costly, inconve-
nient (sometimes requiring the application to make code
changes), and lack performance.

48 May 1998 • The Hewlett-Packard JournalArticle 7 • 1998 Hewlett Packard Company

The lack of communication between screens with respect
to window placement forces users to direct their applica-
tions towards a specific screen at application start time.
After a screen has been selected all additional subwin-
dows will be confined to that screen. With today’s larger
applications, it is possible to find that certain screens still
get overcrowded, resulting in the original predicament of
having to iconify and raise windows.

Single Logical Screen

To remedy the shortfall of the multiscreen configuration,
HP developed a technology called single logical screen

(SLS).3 SLS has been incorporated into the HP standard
X server product and allows multiple monitors to act as a
single, larger, contiguous screen. As a result, windows can
move across physical screen boundaries, and they can
span more than one physical monitor. In addition, SLS
functionality has been implemented in an application-
transparent manner. This means that any application cur-
rently running on HP-UX workstations will run, without
modification, under SLS. Therefore, SLS is not an API that
application writers need to program to or that an applica-
tion needs to be aware of. The application simply sees a
large screen. This ease-of-use lets end users take advan-
tage of a large workspace without requiring applications
to be rewritten or recompiled.

Many of electronic design automation (EDA) and computer-
aided design applications can benefit from SLS. Some of
these applications, by themselves, can easily occupy an
entire screen while only showing a fraction of the desired
information. For example, with more screen real estate,
an EDA application can simultaneously display wave-
forms, schematics, editors, and other data without having
any of this information obscured. To do this on a work-
station with only a single monitor would require display-
ing the waveforms, schematics, and other items in such
small areas as to be unreadable.

On HP-UX Workstations, a single logical screen actually
represents a collection of homogeneous graphics devices
whose output has been combined into a single screen.
Figure 3, shows an example of a 1-by-2 SLS configura-
tion. Most HP-UX workstations are not limited to only
two graphics devices. Some models support up to four
devices. When using these graphics devices to create an
SLS environment, any rectangular configuration is allowed.

Figure 3

A 1-by-2 SLS configuration.

display:0.0

SLSclone

SLSclone is similar to the SLS configuration. The differ-
ence is that the contents from a selected monitor are
replicated on all other monitors in the configuration (see
Figure 4). A user can dynamically switch between SLS
and SLSclone using an applet being shipped with the
HP-UX 10.20 patch PHSS_12462 or later.

This functionality is useful in an educational or instruc-
tional environment. Instead of crowding many users
around a single monitor to view its contents, SLSclone
can be used to pipe these contents to neighboring moni-
tors. As with SLS, SLSclone currently supports up to four
physical monitors, depending on the workstation model.

SLSclone functionality easily lends itself to a collaborative
work environment. If additional people enter a user’s
office to debug some software source code, for example,
the user can quickly switch the SLS configuration into an
SLSclone configuration, and the debugging screen will be
displayed on all monitors. Also, the additional monitor
can easily be adjusted to the correct height and tilt with-
out affecting the original user’s view of the display.

Figure 4

An example of a 1-by-2 SLSclone configuration.

display:0.0

49 May 1998 • The Hewlett-Packard JournalArticle 7 • 1998 Hewlett Packard Company

Figure 5

A hybrid configuration consisting of a 1-by-2 SLS with multi-
screen.

display:0.0

Monitor 1 Monitor 2 Monitor 3

display:0.1

SLS and Multiscreen

Even with the benefits of SLS, there may be cases in
which a user will want to use SLS and multiscreen at the
same time. For example, a user could have a 1-by-2 SLS
configuration acting as one screen, and a third monitor
acting as a second screen. A depiction of this is shown in
Figure 5.

In this type of configuration, a user can move windows
between physical monitors 1 and 2 but not drag a window
from monitor 2 to monitor 3. The pointer, however, can
move between all monitors. This type of hybrid configura-
tion can be useful in a software development environment.
All of the necessary editors, compilers, and debuggers can
be used on monitors 1 and 2, and the application can be
run and tested on monitor 3.

If a workstation supports four graphics devices, another
possible hybrid configuration is to use two screens,
each of which consists of a two-screen SLS configuration
(Figure 6).

In this configuration, windows can be moved between
monitors 1 and 2 or between monitors 3 and 4. However, a
window cannot be moved between monitors 2 and 3. As

with all multiscreen configurations, the pointer can move
across all four monitors. These two screens could also
be placed vertically, resulting in a 2-by-2 monitor arrange-
ment and a 2-by-1 multiscreen configuration.

Conclusion

Advanced display configurations can be used to increase
productivity. The increase in screen space facilitates col-
laboration and communication of information. We have
also found that these configurations are very useful for
independent software vendors (ISVs) who demonstrate
their applications on HP-UX workstations. They appreci-
ate the additional screen space because they are able to
display more information and rapidly describe their prod-
ucts without losing their customers’ attention.

Finally, the configuration of an advanced display is ac-
complished in an easy and straightforward manner through
the HP-UX System Administration Manager (SAM). Addi-
tional information on advanced display configurations
and other exciting X server features are available at:
http://www.hp.com/go/xwindow

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura-
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

References

1. T. Spencer and P. Anderson, “Implementation of Advanced
Display Technologies on HP-UX Workstations,” Hewlett-Packard

Journal, Vol. 49, no. 2, May 1998 (available online only).
 http://www.hp.com/hpj/98may/ma98a7a.htm

2. R. MacDonald, “Hewlett-Packard’s Approach to Dynamic
Loading within the X Server,” Hewlett-Packard Journal, Vol. 49,
no. 2, May 1998 (available online only).
 http://www.hp.com/hpj/98may/ma98a7b.htm

3. M. Allison, P. Anderson, and J. Walls, “Single Logical Screen,”
InterWorks ’97 Proceedings, April 1997, pp. 366 - 376.

Figure 6

display:0.0 display:0.1

Two 1-by-2 SLS configurations combined via multiscreen.

http://www.hp.com/hpj/98may/ma98a7a.pdf
http://www.hp.com/hpj/98may/ma98a7b.pdf
http://www.hp.com/go/xwindow

50 May 1998 • The Hewlett-Packard JournalArticle 7 • 1998 Hewlett Packard Company

	��� �� �����

A software engineer at

the HP Workstation Sys-

tems Division, Todd

Spencer was responsible for development of

the the SAM component that allows users to

set up multiscreen and single logical screen

configurations. He came to HP in 1989 after

receiving an MS degree in computer science

from the University of Utah. Todd was born

in Utah, is married and has four children. His

outside interests include tropical fish, camp-

ing, woodworking, piano (playing classical

music), and jogging.

�
�� �� �������

Paul Anderson is a soft-

ware engineer at the HP

Workstation Systems Di-

vision. He joined HP in 1996 after receiving a

BS degree in computer science from the Uni-

versity of Minnesota. He is currently working

on device drivers for new peripheral technol-

ogies. His professional interests include I/O

drivers, operating systems, and networking.

Paul was born in Edina, Minnesota. His out-

side interests include hiking, music, and

mountain biking.

�
��� �� �����

With HP since 1977,

David Sweetser is a

project manager at the

HP Workstation Systems Division. He is re-

sponsible for the X server and some of the

client-side X libraries. He received a BSEE

degree and an MSEE degree from Harvey

Mudd College in 1975. He was born in Wood-

land, California, is married and has two chil-

dren. His outside interests include mountain

biking, hiking, snowshoeing, cross-country

skiing, and white-water rafting.

http://www.hp.com/hpj/98may/ma98a7a.pdf
http://www.hp.com/hpj/98may/ma98a7b.pdf
http://www.hp.com/hpj/98may/ma98a8.htm
http://www.hp.com/hpj/journal.html

May 1998 • The Hewlett-Packard JournalA-1Subarticle 7a • 1998 Hewlett Packard Company

Implementation of Advanced Display
Technologies on HP-UX Workstations

This article provides implementation and configuration information about the

single logical screen (SLS) technology described in the article “Advanced

Display Technologies on HP-UX Workstations.”1

Understanding the implementation of SLS requires a little background on

the X server architecture. The X server is divided into layers of functionality,

each with a specific purpose and each interfacing with its neighbors. At the

lowest level, which is closest to the physical hardware, is the device-dependent

X (DDX) layer. This layer is responsible for controlling the frame buffer,

including all rendering. Specifics of frame buffer control involve functions

such as frame buffer initialization and state management, hardware locking,

rendering, pointer control, hardware colormap management, and other

functions such as direct memory access. Also included within the DDX layer

is the detection and management of input.

At the highest layer is the device-independent X (DIX) layer. This layer

contains code that is independent of the various hardware platforms. Think of

this layer as the control layer. It includes the dispatch loop that manages the

reception and processing of X protocol, event management, error detection,

and other control, organization and bookkeeping operations. This layer also

interfaces extensively with the operating system interface layer and with the

DDX layers.

The operating system interface layer contains operating system calls, and it

controls such things as memory management (allocation and deallocation),

connections (socket creation), and kernel interactions. Although most of the

operating system interface layer code is referenced from within the DIX layer,

the DDX layer also invokes interface-layer-specific calls. Although there are

other areas, such as font control, they have very little to do with SLS so they

will be omitted from our discussion. Figure 1 shows typical X Client using an

X API such as Xlib to communicate with the X server.

��

 �� ���	��

���� �� �
����

��

 �� ���	��

A software engineer at

the HP Workstation Sys-

tems Division, Todd

Spencer was responsible for development of

the the SAM component that allows users to

set up multiscreen and single logical screen

configurations. He came to HP in 1989 after

receiving an MS degree in computer science

from the University of Utah. Todd was born

in Utah, is married and has four children. His

outside interests include tropical fish, camp-

ing, woodworking, piano (playing classical

music), and jogging.

���� �� �
����

Paul Anderson is a soft-

ware engineer at the HP

Workstation Systems Di-

vision. He joined HP in 1996 after receiving a

BS degree in computer science from the Uni-

versity of Minnesota. He is currently working

on device drivers for new peripheral technol-

ogies. His professional interests include I/O

drivers, operating systems, and networking.

Paul was born in Edina, Minnesota. His out-

side interests include hiking, music, and

mountain biking.

May 1998 • The Hewlett-Packard JournalA-2Subarticle 7a • 1998 Hewlett Packard Company

Figure 1

A typical X client uses an X API such as Xlib to communicate
with the X server.

device-independent
X (DIX) Layer

X API

X Client

device-dependent
X (DDX) Layer

Operating System
CommunicationsOperating System

Interface Layer

Xlib

The DDX, DIX, and operating system interface layers for-
mulate the essence of the X server. User programs typi-
cally do not send X protocol directly to the X server.
Rather, they use an API such as Xlib or one of the Motif
toolkits that generate X protocol and communicate
with the X server. For example, when a client issues an
XOpenDisplay() call, a connection is established with the X
server. A subsequent XDrawRectangle() request will then
cause the Xlib library to generate the appropriate X proto-
col which eventually gets sent across the connection to the
X server. The operating system interface layer procedure
WaitForSomething() detects the arrival of each request. The
DIX Dispatch() procedure decodes it and invokes the ap-
propriate procedure. These high-level procedures perform
error checking, ensure that the graphics context has been
validated and possibly perform other internal bookkeeping
before invoking the appropriate DDX entry point to draw
the appropriate pixels on the screen.

In the HP-UX operating system, the X server executable
does not contain static DDX modules. DDX modules are
dynamically loaded and initialized via plug-and-play func-
tionality within the DIX InitOutput() entry point. There is a
collector mechanism in place that identifies which DDX
modules can support a particular device and selects the
best module available. Typically, when support for new
hardware is added all that is required is a new DDX
module and broker, which is another shared library that
works with the collector to tell the X server what graphics
device it supports and how it is to be loaded. With SLS,

we provided a new DDX module (and broker) and made
some minor modifications to the DIX and input areas.

Initialization

During initialization of the HP-UX X server, screen config-
urations are set up by parsing the X0screen configuration
file. The syntax for a normal screen is simply “Screen
<device_name>” (for example, “Screen /dev/crt”). When-
ever this syntax is parsed, a new screen is created and
stored in the global screenInfo array.

Because SLS manages multiple devices, it cannot use the
same X0screen configuration file parsing mechanism. It
needs to know which devices to manage and how to orga-
nize them (for example, vertical, horizontal, or matrix
layout). To accomplish this, the X server configuration
syntax was extended. For SLS scenarios, the configura-
tion file must specify the number of rows, columns, and
device files that will be managed by the logical screen.
The syntax is as follows*:

 SingleLogicalScreen <nRows> <nCols> <device_name1> ...
<device_nameN>

Whenever the parsing routines detect the SingleLogical-
Screen token in the configuration file, a new procedure
is called to parse the remaining SLS tokens, initialize the
necessary global structures, and create the SLS screen.
An interesting implementation detail to note is that we
also create additional screen structures for each device
being managed by the single logical screen. These screens
are referred to as alternate screens and are hidden from
the DIX layer in that they are not accessible by the global
screenInfo array. There is another global data structure,
called SLSRec, that points to these alternate screens and
records information such as screen offsets. An instance of
an SLSRec is created for each SLS screen. The structure
and purpose of SLSRec is similar to the screenInfo global.

For each SLS screen and its components (alternate
screens) an instance of the ScreenRec structure is created.
ScreenRec is a high-level DIX structure that stores screen-
specific information and function pointers for screen
operations involving windows, pixmaps, backing store,
fonts, pointers, colormaps, regions, and related opera-
tions. As shown in Figure 2 there is one ScreenRec for

* This is transparent to users configuring the X server via the system administration
manager (SAM) utility.

May 1998 • The Hewlett-Packard JournalA-3Subarticle 7a • 1998 Hewlett Packard Company

Figure 2

The SLS data structures and their association to the SLS hardware.

Hardware Level

Data Structure
Level

Monitor 1 Monitor 2 Monitor 3

display:0.0
SPU with Three
Graphics Cards

0,0

0,0

0,0

1279,1023

Frame Buffers

0,0

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

SLS Screen (display:0.0)

SLSRec

Pointers to
ScreenRec
Structures

Four ScreenRec Structures
3839,1023

Size of Each Frame Buffer

the SLS screen and one each for the alternate screens.
This structure was modified to allow SLS to intercept pro-
tocol for mapping and unmapping windows, circulating
windows, changing the window stacking order, and deliv-
ering events. Thus, when SLS intercepts one of these pro-
tocols, the SLS ScreenRec uses the function pointers in its
jump table to invoke the functions associated with each
alternate screen’s ScreenRec. These functions use the
information contained in their respective ScreenRecs to
invoke other functions to perform the requested opera-
tions on their alternate screens. This architecture allows
the DDX modules to drive the SLS screen in a device-
independent fashion.

The reason for creating alternate screens is to leverage as
much from the existing DDX drivers as possible. It would
be unproductive to require a rewrite of all the existing
code to support SLS. The SLS module is a controller that
inserts itself into the DIX and DDX layers and performs
the necessary control and manipulation to drive multiple
DDX modules. In this way, we get the benefit of control-
ling multiple devices under a logical screen without having
the development and maintenance overhead of creating
and supporting SLS-specific drivers for all our graphics
devices.

When each alternate screen is created, the origins are
manipulated to account for the layout of the SLS screens.

May 1998 • The Hewlett-Packard JournalA-4Subarticle 7a • 1998 Hewlett Packard Company

Figure 3

Coordinate offsets in the alternate screens.

1-by-3 Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

(0,0) (1280,0) (2560,0)

Monitor 1 Monitor 2 Monitor 3

For example, in a 1-by-3 SLS configuration (see Figure 3),
the first, or left-most screen, would have an offset of (0,0).
The center screen would be offset by the width of the
first screen (for example, �1280,0). In this case we ig-
nore the height in horizontal configurations because each
alternate screen begins at zero and extends to the height
of the device. Finally, the last screen would have an x
offset consisting of the width of the previous two screens
(for example, �2560,0). The negative values are used be-
cause we need to compensate for the fact that the frame
buffer begins at 0,0 but represents another location on the
SLS screen (described next). This negative value adjusts
for the SLS screen offset and allows the normal DDX
driver to render to a location that is valid and visible for
that device.

Request Duplication

In general, client requests for the SLS screen are dupli-
cated across each of the alternate screens. For instance,
when a window is created on an SLS screen, a window is
also created on each of the alternate screens. These alter-
nate windows have the same characteristics as the top-
level SLS window. The same is true for other screen prop-
erties such as colormaps and graphics contexts. Although
this creates some overhead, it enables SLS to operate
transparently to the user and to the DDX modules. For
example, creating a window with a specific geometry in a
1-by-3 SLS configuration, results in the creation of four
windows, all with essentially the same geometry. One
window is created for the SLS screen referenced by client
applications via an identifier obtained with Xlib API calls
to XCreateWindow() or XCreateSimpleWindow(). The other
three windows are created on each alternate screen. Only

the SLS module in the X server knows about these alter-
nate screen windows. When we create windows for alter-
nate screens, we adjust the coordinates according to the
offsets of each screen.

For example, in Figure 4 the window defined by the
coordinates x�0, y�0, width�100, height�100 is
shifted to x�0, y�0 on alternate screen 1, to x = �1280,
y�0 on alternate screen 2, and to x��2560, y�0 on al-
ternate screen 3. In this way, when a window overlaps
monitors, only the correct portions are seen on each mon-
itor. Out of the four windows created in this example,
only the window on alternate screen 1 will be visible be-
cause it is completely contained within the frame buffer
associated with alternate screen 1 because it is contained
within region 0,0 and 1279,1023.

When rendering, an X Client must specify a target draw-
able, which is represented by a pixmap or a window. For
rendering to a window, the SLS module must substitute
the user-specified top-level window with the appropriate
alternate windows before invoking the rendering proce-
dures. A rendering procedure is called for each alternate
window. Since this top-level SLS window has no frame
buffer associated with it, all rendering must occur within
the alternate windows.

Event Processing

The implementation of the SLS module required some
special considerations for event processing. If we had not
made any changes to the SLS module, user applications
would receive events in a different way than they receive
them from a non-SLS environment, violating the design
goal of application transparency and violating standard X
protocol.

An event is a message generated by the X Server when a
particular action occurs. Events are sent only to interested
clients. A client application reads each event (in FIFO
order) and performs the appropriate processing for that
event. Events are commonly generated to notify the client
of input events or state changes in the X server’s window
tree. In addition, pointer activities such as pressing mouse
buttons and moving the mouse will cause the X server to
generate events such as ButtonPress, ButtonRelease, and
MotionNotify. Keyboard activity generates analogous

May 1998 • The Hewlett-Packard JournalA-5Subarticle 7a • 1998 Hewlett Packard Company

Figure 4

Alternate Screen 1 View

3839,1023

2560,0

2559,10231279,1023

1280,00,0

2559,1023

1280,0

1279,10231,1023

0,01280,0

1279,1023

0,0

1,10231279,1023

1280,02560,0

Alternate Screen 2 View

Alternate Screen 3 View

Visible

Visible

Visible

1279,1023

0,0

User View (Via Frame Buffers)

Mapping a window onto an SLS screen.

Monitor 2 Monitor 3Monitor 1

Mapping to Frame Buffers

events such as KeyPress and KeyRelease. Examples of X
server state change events include EnterNotify and Leave-
Notify when the pointer enters or leaves a window or
DestroyNotify when a window is destroyed. These are just
a few examples of the various event types the X server
can generate and clients can receive and process.

In describing the delivery of events to clients, we often
use the term “interested client.” We define a client as in-
terested in an event if it has explicitly asked the X server
to deliver that type of event. In this manner, the X server
does not notify all clients about all events, which often
reduces the complexity of client applications. This event

selection model also decreases network traffic by reduc-
ing the number of superfluous events traveling from the
X server to its clients.

To illustrate the challenge posed by event processing in
SLS, consider an example using a VisibilityNotify event. A
VisibilityNotify event reports to an interested client that a
window’s visibility has changed. An interested client can
then decide to begin or terminate rendering to that win-
dow if the event denotes that the window is partially ob-
scured or fully obscured. Consider the SLS configuration
shown in Figure 5 that is composed of three screens with
a window spanning screens 1 and 2.

May 1998 • The Hewlett-Packard JournalA-6Subarticle 7a • 1998 Hewlett Packard Company

Figure 5

A configuration in which a single state change could cause
four VisibilityNotify events.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

Alternate
Screen 3

In this case, a single state change could cause four Visibility-
Notify events (remember that four windows are created
for this configuration: one for the SLS screen and one for
each alternate screen). First, alternate screen 1 tells the
client that the window is partially obscured. Second,
alternate screen 2 gives the client the same message
because each half of the window is only partially visible
on each of the two physical screens it spans. As a result,
an interested client will render to the window. The third
event comes from alternate screen 3, which tells the
client that the window is fully obscured so that the client
will stop rendering to the window. Thus, the client gets
several conflicting messages as to the visibility of the win-
dow. All three of these messages, however, do not give an
accurate depiction of the window because another Visibili-
tyNotify event will be generated, denoting that the window
is fully visible on the SLS screen. Thus, our model of using
alternate screens poses many problems in event handling.

Given the event processing complexity of the simple situ-
ation described above, what is the best mechanism to sort
out a potentially conflicting series of events and give the
client an accurate story of what is depicted on the screen?
Since the SLS screen reflects the true composite state of
all alternate screens, the X server can discard all events
that do not originate from the SLS screen. Simply eliminat-
ing events that originate from all alternate screens solves
much of the complexity of event processing. Because al-
ternate screen events are never placed on the X server’s
outbound event queue, the potential for a client to receive
conflicting event notifications is eliminated. Based on
these assumptions, the primary event processing routine
in the SLS module can be expressed in the following
pseudocode:

for each potential ”event” on server’s event

queue

 {

 if event’s originating screen is the SLS

screen

 {

 Deliver event to interested clients

 }

 else

 {

 Discard event

 }

 }

The method of discarding events from alternate screens
works well, except in the case of Expose events. The X
server generates an Expose event when an obscured win-
dow becomes visible or when an obscured portion of a
window becomes visible. Expose events, however, can be
more complex than other events because a single window
action, such as moving, raising, or destroying a window,
can cause the X server to generate multiple Expose events.
Consider Figure 6, which contains a single screen with
three windows.

 If the user destroyed window C, the X server would gen-
erate Expose events to tell interested clients that windows
A and B have new regions exposed and that those exposed
regions need to be redrawn. The X server must also en-
sure that these Expose events are delivered to interested
clients in a continuous fashion. That is, the Expose events
resulting from a single window action must be delivered
in a continuous event stream. The XExposeEvent structure
has a count field that tells the client how many subsequent
contiguous Expose events remain.

The requirement that related Expose events must be deliv-
ered in a single series posed the greatest problem for the

Figure 6

A single screen with windows A, B, and C.

A B

C

May 1998 • The Hewlett-Packard JournalA-7Subarticle 7a • 1998 Hewlett Packard Company

Figure 7

Window B obscures a portion of window A.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

A

B

event handling component in the SLS module. To illus-
trate the problem, consider the two screens in Figure 7

that are configured as a single logical screen.

In this example, window B partially obscures window A.
If window B is destroyed, the client needs to be notified
so that it can issue requests to redraw the lower half of
window A. There are two regions that need to be redrawn:
the region of window A on alternate screen 1 and the re-
gion of window A on alternate screen 2. If we used the
method of discarding events that originate from alternate
screens, the client would not receive the exposures from
each of the alternate screens.

This might lead one to conclude that the SLS module’s
event processing loop should ignore all events from alter-
nate screens, except for Expose events, which should be
passed straight through the client as if they were non-
Expose events. However, this method would break the
requirement that related Expose events be delivered
contiguously.

If window C existed on alternate screens 1 and 2 and was
also obscured by window B (Figure 8), the destruction of
window B could cause Expose events to be generated in
the sequence given in Table I.

Figure 8

Window B obscures portions of windows A and C.

Single Logical Screen

Alternate
Screen 1

Alternate
Screen 2

A

B
C

This would result in four different Expose events referring
to two different windows in an interleaving fashion.
Instead, we would prefer to see something like the
sequence in Table II.

As a result, the client receives two event bundles refer-
encing windows A and C, and each bundle contains two
Expose events denoting the regions on the particular win-
dow that need to be redrawn. This satisfies the continuity
requirement for delivering Expose events.

Based on the need for a reordering method similar to that
shown in Table II, the X server needs to use a different
mechanism to process and deliver Expose events. If a typi-
cal user’s environment only had two or three windows,
the X server might have been able to function using hard-
coded bookkeeping to track and reorder Expose events.
Since most users commonly have substantially greater
than a few windows (the Common Desk Environment
[CDE] may use hundreds), a more general and robust
method was needed. As a result, the SLS module uses a
technique called event coalescing to reorder Expose events
correctly into bundles corresponding to each window
before the Expose events are delivered to the client.

Table I
Expose events generated from destroying window B in Figure 8.

 Sequence
Number

 Alternate
Screen

Window Region (x1,y1,x2,y2)

0 1 A (1000,600,1279,700)

1 1 C (600,1000,1279,1100)

2 2 A (1280,600,1580,700)

3 2 C (1280,1000,1800,1100)

May 1998 • The Hewlett-Packard JournalA-8Subarticle 7a • 1998 Hewlett Packard Company

Table II
Desired Expose event sequence generated from destroying window B in Figure 8.

 Sequence
Number

 Alternate
Screen

Window Region (x1,y1,x2,y2)

 0 1 A (1000,600,1279,700)

 1 2 A (1280,600,1580,700)

 2 1 C (600,1000,1279,1100)

 3 2 C (1280,1100,1800,1100)

Event coalescing is a generic method for temporarily re-
moving events from the X server’s event queue, reordering
the events into related bundles, and then placing them
back onto the event queue for later delivery to the client.
To perform this reordering, the SLS module uses an inter-
nal linked list that corresponds to each window. When a
newly Exposed region for a particular window is discov-
ered, that region is simply added to the link correspond-
ing to that window. From the configuration shown in
Figure 8 (and the event list in Table I), generating inter-
leaved Expose events for windows A and C on alternate
screens 1 and 2 would yield an event coalescing list like
the one shown in Figure 9.

Therefore, at the appropriate time, we can easily arrange
the Expose events for window A and send a two-event
bundle corresponding to window A to the client. The
same applies to window C.

Figure 9

(600,1000,
1279,1100)

Sequence: 1

(1280,600,
1580,700)

Sequence: 2

(1280,1100,
1800,1100)

Sequence: 3

A

(1000,600,
1279,700)

Sequence: 0

C

A coalescing list for the exposed windows in Figure 8.

Now that we have rearranged the Expose events into easily
deliverable bundles, the X server needs to determine the
appropriate time to deliver these bundles to the client. As
with other events, we deliver the repackaged Expose event
when the SLS screen, rather than an alternate screen, re-
ceives the Expose event. When the SLS screen receives an
Expose event for a particular window, we find the events
packaged for that window by looking for that window in
our list, delivering the event bundle to the client, and then
deleting these events from our event coalescing linked list.

Using this information, we can extend our original event-
processing component of the SLS module into the follow-
ing pseudocode:

for each potential ”event” on server’s event

queue

 {

 if event is an Expose event

 {

 if event originated from an alternate

 screen

 {

 add event to the list for its

 corresponding window

 }

 else if event originated from SLS

 screen

 {

 Deliver ”saved” events for that

 window to interested clients.

 Delete those events from internal

 list

 }

 continue;

 }

 if event’s originating screen is the SLS

 screen

 {

 Deliver event to interested clients

May 1998 • The Hewlett-Packard JournalA-9Subarticle 7a • 1998 Hewlett Packard Company

 }

 else

 {

 Discard event

 }

 }

By using this event-processing mechanism, the SLS module
can cleanly deliver events to clients in an expected fashion
and without conflicting results.

Input Considerations

Although much of the complexity of the SLS module in-
volves managing display output (that is, keeping track of
which windows or portions thereof appear on which
physical screens), there are also some special consider-
ations that must be made for input. The most important
aspect of input event handling is that the user sees a
smooth motion when moving the pointer. The pointer
needs to move from one screen to another when it crosses
monitor boundaries, and this transition should be handled
smoothly. For example, consider the configuration in
Figure 10.

If the pointer is located in the upper left corner of monitor
2, and we move the pointer to the left, the pointer is moved
from monitor 2 to monitor 1. The SLS module needs to
ensure that the pointer moves smoothly across the moni-
tor boundaries rather than jumping across monitors. This
is especially important when the user drags a window
from one monitor to another, since a jumping or pointer-
snap effect will cause the entire window to jump.

In addition, if the pointer comes to rest at a location that
corresponds to a physical monitor boundary, we want the
pointer to be present on both screens, rather than choos-
ing one screen or the other to display the pointer. To do
this, we employ the concept of pointer sensitivity along

Figure 10

Monitor 1 Monitor 2

x

Moving the pointer between monitors.

the edges of the physical monitors. When the pointer is
within this sensitive range along the edge of a monitor, the
X server displays the pointer on the neighboring screen
and the current screen. In Figure 10, as the pointer
moves from monitor 2 to monitor 1, there will be a time
when the head of the pointer is displayed on monitor 1,
and the tail of the pointer appears on monitor 2. This
maintains the look and feel of the single logical screen
concept.

To implement this, we check the new location coordinates
for our pointer on each screen and turn the pointer on or
off for that screen, depending on whether the pointer
should be visible on that screen. Since we use the DDX
driver’s pointer rendering routines, we let the individual
DDX driver perform the work of clipping against physical
screen boundaries. Therefore, the SLS module does not
need to clip the pointer for the case in which the pointer
falls on adjacent screens. Not only does this implementa-
tion method simplify pointer management code within the
SLS module, but it also easily generalizes to the case of a
four-headed 2-by-2 SLS configuration, in which some
portion of the pointer could physically appear on all four
screens. Based on this description, the following pseudo-
code handles most of the code in the SLS module that
tracks pointer position:

 /* x & y are the x- and y-coordinates of

 * location to move the pointer.

 * sensitivity_x & sensitivity_y are the

 * x and y coordinates of our pointer

 * sensitivity bounding box.

 */
 for each ”alternate screen”

 {

 if (x,y) is on ”alternate screen” or is

 in the region formed by (sensitivity_x,

 sensitivity_y)

 {

 Displaypointer (screen, x, y);

 }

 else

 {

 TurnOffpointer (screen);

 }

 }

The question comes up as to how the X server handles
pointer movement for the case of a multiscreen configura-
tion like that shown in Figure 11, which has four physical
monitors configured as two SLS screens. In this scenario

May 1998 • The Hewlett-Packard JournalA-10Subarticle 7a • 1998 Hewlett Packard Company

Figure 11

display:0.0 display:0.1

Two 1-by-2 SLS configurations combined via multiscreen.

the SLS module handles the pointer movement, as pre-
viously described, for each of the two SLS screens. There-
fore, pointer motion within each SLS screen will have a
smooth and even movement across the physical screens.
When moving from one SLS to the other SLS, however,
the pointer motion will not be as smooth because we do
not try to accomplish this smooth pointer motion in a
multiscreen environment.

If the pointer in Figure 11 moves from the left SLS screen
to the right SLS screen, the pointer on the left SLS screen
will be turned off, and it will be turned on in the right SLS
screen. The user would not, however, see a case where
the pointer’s head appears on the left screen of the right
SLS screen and the pointer’s tail on the right screen of the
left SLS screen. Since the X server simply turns off the
pointer on the left SLS screen and turns it on in the right
SLS screen, the pointer transition will not appear smooth.
This occurs because pointer motion between (logical)
screens in a multiscreen configuration is not handled in
the SLS module but rather in the DDX input code.

Configuration

The HP-UX system administration manager (SAM) sup-
ports advanced display configuration on HP-UX 10.0 sys-
tems and beyond. This HP-UX GUI automates many dif-
ferent administration tasks and can run under X Windows
or in terminal mode. Users are required to have root per-
mission to execute the SAM command.

A prerequisite for an advanced display configuration
is the availability of multiple graphics display devices.
Although some utilities exist that will identify graphics
devices, the best way to identify the number and type of
graphics devices in a system is through SAM. To do this,
invoke SAM and look for either the Display or X Server
Configuration icons. On patched 10.20 systems and beyond,

the X Server Configuration icon has been moved to under
the Display folder shown in Figure 12.

Clicking on the Display folder icon will produce the win-
dow shown in Figure 13. The Monitor Configuration icon
allows changing the screen’s (frame buffer) resolution,
refresh rate, timing standard, hardware double buffering,
and quad buffer stereo operation without requiring the
user to reboot. The X Server Configuration icon is used to
configure the HP-UX X server or simply identify which
graphics devices have been installed and are available.
It is this subarea within SAM that enables the advanced
display configurations.

Note that on systems containing only one graphics device,
it will be impossible to set up an advanced display config-
uration. It is possible, however, to install additional graph-
ics devices and have an advanced display configuration.
The graphics configuration tool GUI will provide insight
into what graphics are supported on HP-UX systems and
where they can be plugged in.

As shown in Figure 14, the X Server Configuration window
graphically illustrates the current X server configuration.
In this case system xtc112 contains two HP VISUALIZE-EG
graphics devices. The first is an internal graphics device
(slot 0) and is configured, meaning that the X server is
currently using it. The second graphics device is plugged
into slot 1 and is unconfigured, as represented by the
grayed icon.

Just below the menu bar are two status lines. The first
status line is used to convey critical screen information.
The first two words identify if a user is configuring a print
server or a video server. For most users this will always
be a video server. The DISPLAY string is the environment
variable users must set for X clients to talk to this X server.
The X Configuration File string identifies which configuration

May 1998 • The Hewlett-Packard JournalA-11Subarticle 7a • 1998 Hewlett Packard Company

Figure 12

Main SAM window.

Figure 13

The Display window.

May 1998 • The Hewlett-Packard JournalA-12Subarticle 7a • 1998 Hewlett Packard Company

Figure 14

The X Server Configuration window.

file is being used. For example, if the default X0screens
file is being used, the hostname is xtc112, and if the ksh
shell is being used, then a user would need to type: export
DISPLAY=xtc112:0 to run an X client on that display.

The major portion of the X Server Configuration window
is used for screen icons. There are three types of screen
icons: configured, unconfigured, and SLS (see Figure 15).
Each icon represents one screen that maps directly to a
physical graphics device (or devices) such as a graphics
card or the internal onboard graphics devices (or a combi-
nation of devices for SLS). Each screen can be configured
or unconfigured. The configured screens will always be
sorted by screen position in a left-to-right fashion. For
example, if there are two configured screens, the left-most
icon is assigned position: 0.0, and the second screen is
given position :0.1. Unconfigured screens are represented
with grayed icons that indicate that the X server will not
use them. The icon for a single logical screen shows the
X spanning multiple monitors and is used to represent
screens made up of multiple graphics devices.

Figure 15

The X Server Configuration icons. (a) Configured screen.
(b) Unconfigured screen. (c) SLS screen.

(a) (b) (c)

Actions

The menu items in the Actions menu contain the function-
ality for changing the configuration of the X server.

Actions will be active or grayed out depending on which
screens have been chosen. Users can select multiple
screens via CTRL-select. Preselecting configured and un-
configured screens will result in only the global actions
Describe Screen and Identify Screen being active. SLS icons
are in the same classification as configured icons. Uncon-
figuring an SLS screen is similar to breaking the compo-
nents into individual screens (which will remain individu-
ally configured). Removing a screen from configuration
on an SLS icon will dissolve the SLS object into its com-
ponents and return it to an unconfigured state.

Multiscreen Configuration

There are several ways to create a multiscreen configura-
tion. The simplest is to select an unconfigured screen and
add it to the configuration. The Add action causes the
selected screen to be appended to the existing list of
configured screens.

To control screen positioning, users can invoke the Modify
Multi-Screen Layout... action. When invoking this action, if
any unconfigured screens have been preselected, these
screens will become configured before displaying the lay-
out dialog window. If fewer than two configured screens
exist, an error message is displayed instructing the user in
properly invoking the layout.

May 1998 • The Hewlett-Packard JournalA-13Subarticle 7a • 1998 Hewlett Packard Company

Any modifications to the X server configuration will take
effect after the configuration has been saved and the X
server has been restarted.

Identify Screen

There is no automated method of identifying whether the
monitors are positioned left-to-right, top-to-bottom, or
whether there is a monitor connected at all. This was the
first real problem encountered in providing a GUI for ad-
vanced display configurations. For single-screen systems
this is not much of a problem. Of course, if the monitor is
not connected properly, nothing will be visible. On systems
with multiple screens, users might not know which moni-
tor they are looking at. How can a user identify which
monitor is connected to which graphics device? When
configuring an advanced display, it is important that users
know where a screen is positioned, otherwise their layout
will be incorrect.

On HP-UX systems a unique device file represents each
graphics device. No physical relationship exists between
the mapping of physical monitor placement to device
files, nor is there any direct correlation between the posi-
tion of the graphics device (for example, which slot it is
located in) with the major and minor numbers of the
device file. Thus, even if the user were to trace monitor
cables from the graphics cards to the actual monitors, a
cumbersome task, nothing would be learned about which
device file maps to which monitor. Since there is no auto-
mated manner to identify this information, we provided
the user with the ability to identify this information via
a point and click interface that identifies a particular
screen’s monitor.

In the X Server Configuration window (see Figure 14), the
Identify Screen action calls a procedure to repeatedly turn
off and on the video output of the graphics cards for the
selected screens. This action causes the monitor con-
nected to the graphics device to blink. In this way users
can easily identify which monitor maps to which physical
graphics device.

The procedures that cause the screen to blink are located
in the shared library of each DDX driver and are indepen-
dent of our SAM component. In this way we have enabled
SAM to support new drivers (or patched drivers) without
changing the SAM executable. This is part of the plug-and-
play functionality that enables the X server to support new
hardware without changing existing libraries.

Single Logical Screen Configuration

The single logical screen setup is very similar to the multi-
screen configuration. Users select those screens they
want to combine into a single logical screen and then
select the Create SLS... action from within the Single Logical
Screen submenu.

An error message will appear if the user attempts to
combine two or more incompatible screens. Warning
messages are issued if the various screen options of the
component screens are different in any way.

The Create SLS... action invokes the layout dialog. When a
user accepts a single logical screen layout, the individual
component screen icons are replaced with the SLS icon.
The SLS screen will then assume the position of its lowest
component. Figure 16 shows what this icon would like
if we combined the two HP VISUALIZE-EG screens in
Figure 14 into a single logical screen using a horizontal
layout.

The SLS icon naming convention conveys information
about its internal layout. The 1×2 in the icon signifies that
the screens are horizontal, and the parenthetical expres-
sion (0,1) indicates the ordering with the internal card
(slot 0) on the left and the external card (in slot 1) on the
right. As with the multiscreen setup, any modifications
will take effect after the configuration has been saved and
the X server has been restarted.

SLSclone Configuration

The SLSclone configuration begins with an SLS configura-
tion. After the SLS configuration is operational, a user
then runs a program to change between SLS and SLSclone
dynamically. This program is shipping with the latest X
server patch (PHSS_12462) and is called SLSclone.

Figure 16

The icon that results from combining two HP VISUALIZE-EG
screens.

May 1998 • The Hewlett-Packard JournalA-14Subarticle 7a • 1998 Hewlett Packard Company

Conclusion

This article has described the implementation of our ad-
vanced display technologies for HP-UX workstations.
Initialization of a single logical screen (SLS) or SLSclone
configuration includes the creation of screen structures
for each of the component screens. These screens are
called alternate screens. The SLS driver replicates appro-
priate requests directed at the SLS screen to these alter-
nate screens, adjusting the offsets as appropriate to
achieve the desired layout. Rendering to alternate screens
is accomplished through existing DDX libraries, providing
flexibility in allowing us to support DDX under SLS drivers
without modifying our SLS driver.

We have also shown how event management was modi-
fied and discussed input considerations arising from our
handling of events. Finally, we have briefly shown how
the HP-UX SAM utility can be used to easily configure
multiple graphics devices. For additional information on
advanced display configurations and other X server fea-
tures, visit our web site at:

 http://www.hp.com/go/xwindow

References

1. T. Spencer, P. Anderson, and D. Sweetser, ”Advanced Display
Technologies on HP-UX Workstations,” Hewlett-Packard Journal,
Vol. 49, no. 2, May 1998.

http://www.hp.com/go/xwindow
http://www.hp.com/hpj/98may/ma98a7b.pdf
http://www.hp.com/hpj/98may/ma98a7.htm
http://www.hp.com/hpj/98may/ma98a8.htm
http://www.hp.com/hpj/journal.html

May 1998 • The Hewlett-Packard JournalB-1Subarticle 7b • 1998 Hewlett Packard Company

The Hewlett-Packard Approach to Dynamic
Loading within the X Server

The HP X server implementation supports dynamic loading of HP and third-party

hardware and software products using a plug-and-play approach that maintains

X server robustness.

The goal was to simplify creation and support of new products while

eliminating required end-user configuration responsibilities for the X server.

This was accomplished by addressing design limitations in the X Consortium’s

sample server. The HP solution introduces two new paradigms called broker

and coinitialization.

The broker paradigm is the backbone of the HP dynamic loading solution.

This mechanism:

� Provides standard interfaces to support third-party products

� Manages graphics hardware, associated software DDX drivers, and

X extensions

� Supports order independence of product installation

� Permits restriction of end-user configuration to noncritical feature

information

� Reduces system resource requirements by deferring loading X extensions

until they are used

� Maintains a log of selected components and configuration information for

reproducibility and maintenance

� Handles product configuration requirements and clarifies product revision

issues

� Introduces a new X server startup control point, creating a very flexible and

extensible server initialization process for product developers.

����
	 �� �������
	

����
	 �� �������
	

With HP since 1988, Ron-

ald MacDonald is a soft-

ware engineer at the HP

Workstation Systems Division. He was a

member of the X server team responsible for

dynamic loading development and third-party

partnerships. He has a BS degree in forestry

(1975) from the University of Michigan and

an MS degree in computer science (1986)

from the University of Arizona.

B-2 May 1998 • The Hewlett-Packard JournalSubarticle 7b • 1998 Hewlett Packard Company

The coinitialization paradigm defines a straightforward
process for joint initialization of graphics drivers and X
extensions requiring graphics driver support. Solving a
classic chicken and egg dilemma in which the graphics
driver and X extension both need the other in place to
complete their initialization.

Background

The term “X server” refers to the X Window System server
developed at the Massachuset Institute of Technology and
then managed by the X Consortium. The X server is the
functional basis for windows on workstations running the
UNIX operating system. What appears on the computer
screen is the output generated by the graphics card in the
workstation managed by the X server.

Over time the quantity of supported graphics hardware
devices and X extensions has grown to the point where
providing a single binary to support everything is not
practical. In addition, some X extensions do not work
with all graphics cards, and third-party graphics cards and
extensions need support. Since the end user can change
the workstation configuration after initial shipping, a more
flexible approach is mandated that can determine a work-
station’s configuration and select a subset of the binaries
present to support that configuration.

This article discusses how the HP X server implementa-
tion addresses configuration issues encountered during
server initialization. This includes honoring optional end-
user configuration requests, selection of specific graphics
hardware and binaries from an available pool, and accom-
modation of a continuously evolving set of X server exten-
sion binaries. X server extensions are enhancements or
modifications to the core functional X server.

The HP X server implementation accomplishes this inte-
gration by separating the various components into dynam-
ically loaded modules so that all components can be con-
sidered with only a minimal set of binaries loaded to form
the run-time binary for any given X server instantiation.
The set of routines that performs this selection and inte-
gration is referred to as the collector.

Broker Paradigm

The broker paradigm is a very simple concept with sur-
prising capabilities. Brokers represent each dynamically
loaded X server component. Brokers are shared libraries
created by the product vendors. The brokers are called

upon by the collector, which interrogates them individu-
ally while sharing information among all of them. The
collector determines which brokers are eventually se-
lected for loading based on information provided by the
brokers as to what they are and what needs to be loaded.
Other than product installation, no further end-user action
is required because the X server loads the correct brokers
during initialization.

During X server startup, initialization steps occur to fill
the X server data structures. Network sockets are estab-
lished, input and output devices are set up, and X exten-
sions are initialized. All this is done to prepare for enter-
ing the dispatch loop to enable client requests to be
processed by the X server.

The broker paradigm is executed as part of this X server
initialization phase. First, end-user requests, such as
which graphics card to use, are checked for. The re-
quested hardware is tested and identified. If problems are
encountered, defaults are substituted in an attempt to
start up the X server. Since the X server is the primary
human-machine interface, robustness is required.

Next, all the extension brokers present are queried via
standard interface definitions to learn their properties and
graphics requirements. Each broker contains the tradi-
tional product definition and configuration information.
This information, along with target graphics hardware
descriptions, is then presented to all graphics brokers.
Each graphics broker reviews the information provided
and responds with a bid for the hardware and a vote on
each extension. Graphics brokers can represent one or
more graphics drivers capable of supporting specific
graphics hardware with varying X extension support
capabilities.

The collector evaluates the hardware bids, selecting the
highest bidder for each target graphics card. Graphics
broker bids are based on the ability to support specific
hardware, performance optimizations, and product revi-
sions. After the graphics hardware drivers are selected,
the extension votes from the winning graphics brokers
are examined to determine which extensions can be
supported.

After the target dynamic components have been identi-
fied, the selected brokers are again queried to determine
which shared libraries should be loaded to define the se-
lected products. At this point it is known which products

May 1998 • The Hewlett-Packard JournalB-3Subarticle 7b • 1998 Hewlett Packard Company

will be loaded. This information is shared with the se-
lected brokers, providing a new control point in the X
server startup. This control point permits the selected
brokers to review the given X server’s instantiation defini-
tion and make final configuration decisions such as ask-
ing the X server to change shared memory size or identify-
ing additional shared libraries for loading. With this last
information available, the collector proceeds to load the
identified shared libraries in preparation for the normal
graphics and extension initialization steps. Finally, a log
file for recording the configuration and loaded shared
library information is maintained.

Since the collector has all the configuration information
in hand, it is possible to delay loading extension libraries
until the first protocol request for that extension is en-
countered. This can significantly reduce the system re-
sources required for a given X server instantiation and
reduce X server startup time. Some X server extensions
are quite resource intensive.

Coinitialization Paradigm

In the X Consortium’s sample X server, the graphics driv-
ers are initialized before the extensions. No initialization
interplay between graphics drivers and X extensions is
addressed. Yet, with each X extension requiring graphics
driver support, additional special control and information
interfaces are typically introduced with joint initialization
dependencies. Coupling this joint dependency with order
independent product installation and dynamic selection
of components provided by the broker paradigm, missing
or new components become a likelihood. Fortunately, the
HP coinitialization paradigm provides a simple solution.

During screen initialization, graphics drivers check which
dynamically loaded extensions are present. This involves
searching for extensions that require specific graphics
driver support to function correctly. When a particular
supported extension is located, assuming the given graph-
ics driver supports that extension, the required special
initialization steps are taken as far as possible. Frequently,
information must be obtained from the extension before
initialization can be completed. (Remember the exten-
sions have not yet been initialized.) This might involve
initializing function pointers or allocating data structures.
Additionally, a callback is registered with the X server for
later use by the extension during its initialization.

Finally, during extension initialization, the graphics driver
callback is retrieved. The extension can use the callback
to request further actions from the graphics driver. Since
the nature of the callback and its argument list is an
extension-specific convention, the mechanism is very
flexible.

Conclusion

These flexible paradigms not only simplify the HP prod-
uct development and release considerations, they also
make it fairly easy to partner with third-party vendors to
place their products on HP-UX platforms. The standard
interfaces make independent development straight-
forward and dynamic loading permits order independent
product releases and installation. With all the complex
vendor-specified configuration information located in the
brokers and managed by the collector, the end user truly
has a plug-and-play environment.

http://www.hp.com/hpj/98may/ma98a7.pdf
http://www.hp.com/hpj/98may/ma98a7a.pdf
http://www.hp.com/hpj/98may/ma98a8.htm
http://www.hp.com/hpj/journal.html

51 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Delivering PCI in HP B-Class and C-Class
Workstations: A Case Study in the Challenges
of Interfacing with Industry Standards

In the highly competitive workstation market, customers demand a wide range

of cost-effective, high-performance I/O solutions. An industry-standard I/O

subsystem allows HP workstations to support the latest I/O technology.

Industry-standard I/O buses like the Peripheral Component Interconnect

(PCI) allow systems to provide a wide variety of cost-effective I/O functionality.

The desire to include more industry-standard interfaces in computer systems

continues to increase. This article points out some of the specific methodolo-

gies used to implement and verify the PCI interface in HP workstations and

describes some of the challenges associated with interfacing with industry-

standard I/O buses.

PCI for Workstations

One of the greatest challenges in designing a workstation system is determining

the best way to differentiate the design from competing products. This decision

determines where the design team will focus their efforts and have the greatest

opportunity to innovate. In the computer workstation industry, the focus is

typically on processor performance coupled with high-bandwidth, low-latency

memory connections to feed powerful graphics devices. The performance of

nongraphics I/O devices in workstations is increasing in importance, but the

availability of cost-effective solutions is still the chief concern in designing an

I/O subsystem. Rather than providing a select few exotic high-performance I/O

solutions, it is better to make sure that there is a wide range of cost-effective

solutions to provide the I/O functionality that each customer requires. Since

I/O performance is not a primary means of differentiation and since maximum

flexibility with appropriate price and performance is desired, using an

��� 	� 	����

���� �� ������

������ �� ���������

���� �� ��������

52 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

industry-standard I/O bus that operates with high-volume
cards from multiple vendors is a good choice.

The PCI bus is a recently established standard that has
achieved wide acceptance in the PC industry. Most new
general-purpose I/O cards intended for use in PCs and
workstations are now being designed for PCI. The PCI
bus was developed by the PCI Special Interest Group
(PCI SIG), which was founded by Intel and now consists
of many computer vendors. PCI is designed to meet today’s
I/O performance needs and is scalable to meet future
needs. Having PCI in workstation systems allows the use
of competitively priced cards already available for use in
the high-volume PC business. It also allows workstations
to keep pace with new I/O functionality as it becomes
available, since new devices are typically designed for the
industry-standard bus first and only later (if at all) ported
to other standards. For these reasons, the PCI bus has
been implemented in the HP B-class and C-class work-
stations.

PCI Integration Effort

Integrating PCI into our workstation products required
a great deal of work by both the hardware and software
teams. The hardware effort included designing a bus
interface ASIC (application-specific integrated circuit)
to connect to the PCI bus and then performing functional
and electrical testing to make sure that the implementa-
tion would work properly. The software effort included
writing firmware to initialize and control the bus interface
ASIC and PCI cards and writing device drivers to allow
the HP-UX* operating system to make use of the PCI
cards.

The goals of the effort to bring PCI to HP workstation
products were to:

� Provide our systems with fully compatible PCI to
allow the support of a wide variety of I/O cards and
functionality

� Achieve an acceptable performance in a cost-effective
manner for cards plugged into the PCI bus

� Create a solution that does not cause performance
degradation in the CPU-memory-graphics path or in any
of the other I/O devices on other buses in the system

� Ship the first PCI-enabled workstations: the Hewlett-
Packard B132, B160, C160, and C180 systems.

Challenges

Implementing an industry-standard I/O bus might seem
to be a straightforward endeavor. The PCI interface has
a thorough specification, developed and influenced by
many experts in the field of I/O bus architectures. There
is momentum in the industry to make sure the standard
succeeds. This momentum includes card vendors work-
ing to design I/O cards, system vendors working through
the design issues of the specification, and test and mea-
surement firms developing technologies to test the design
once it exists. Many of these elements did not yet exist
and were challenges for earlier Hewlett-Packard propri-
etary I/O interface projects.

Although there were many elements in the team’s favor
that did not exist in the past, there were still some signifi-
cant tasks in integrating this industry-standard bus. These
tasks included:

� Designing the architecture for the bus interface ASIC,
which provides a high-performance interface between
the internal proprietary workstation buses and PCI

� Verifying that the bus interface ASIC does what it is
intended to do, both in compliance with PCI and in
performance goals defined by the team

� Providing the necessary system support, primarily in
the form of firmware and system software to allow
cards plugged into the slots on the bus interface ASIC
to work with the HP-UX operating system.

With these design tasks identified, there still remained
some formidable challenges for the bus interface ASIC
design and verification and the software development
teams. These challenges included ambiguities in the PCI
specification, difficulties in determining migration plans,
differences in the way PCI cards can operate within the
PCI specification, and the unavailability of PCI cards
with the necessary HP-UX drivers.

53 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Architecture

The Bus Interface ASIC

The role of the bus interface ASIC is to bridge the HP
proprietary I/O bus, called the general system connect
(GSC) bus, to the PCI bus in the HP B-class and C-class
workstations. Figures 1 and 2 show the B-class and
C-class workstation system block diagrams with the bus
interface ASIC bridging the GSC bus to the PCI bus. The
Runway bus shown in Figure 2 is a high-speed processor-
to-memory bus.1

The bus interface ASIC maps portions of the GSC bus
address space onto the PCI bus address space and vice
versa. System firmware allocates addresses to map be-
tween the GSC and PCI buses and programs this informa-
tion into configuration registers in the bus interface ASIC.
Once programmed, the bus interface ASIC performs the
following tasks:

� Forward writes transactions from the GSC bus to the
PCI bus. Since the write originates in the processor, this
task is called a processor I/O write.

� Forward reads requests from the GSC bus to the PCI
bus, waits for a PCI device to respond, and returns the

Figure 1

HP B-class workstation block diagram.

PA 7300LC
CPU To Main Memory

PCI Bus
Interface

ASIC

GSC Bus

PCI Slots GSC Slots

GSC
PCI

General System Connect
Peripheral Component Interconnect

PCI Bus

read data from the PCI bus back to the GSC bus. Since
the read originates in the processor, this task is called
a processor I/O read.

� Forward writes transactions from the PCI bus to the
GSC bus. Since the destination of the write transaction
is main memory, this task is called a direct memory
access (DMA) write.

� Forward reads requests from the PCI bus to the GSC
bus, waits for the GSC host to respond, and returns the
read data from the GSC bus to the PCI bus. Since the
source of the read data is main memory, this task is
called a DMA read.

Figure 3 shows a block diagram of the internal architec-
ture of the bus interface ASIC. The bus interface ASIC
uses five asynchronous FIFOs to send address, data, and
transaction information between the GSC and PCI buses.

Figure 2

HP C-class workstation block diagram.

PA 8000
CPU

Memory Controller

Runway to
GSC Bridge

PCI Slots GSC Slots

PCI Bus
Interface

ASIC

GSC Bus 1

Runway
Bus

GSC Bus 0

GSC
PCI

General System Connect
Peripheral Component Interconnect

PCI Bus

54 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Figure 3

A block diagram of the architecture for the bus interface ASIC.

GSC Bus

DMA
Transaction FIFO

DMA
FIFO

DMA
Read Return FIFO

Processor I/O
FIFO

Processor I/O
Read Return FIFO

GSC
Interface

PCI
Interface

Configuration
Registers

Interrupt
Controller

PCI
Arbitration

PCI Bus
CPU PCI Slots

A FIFO is a memory device that has a port for writing data
into the FIFO and a separate port for reading data out of
the FIFO. Data is read from the FIFO in the same order
that it was written into the FIFO. The GSC bus clock is
asynchronous to the PCI bus clock. For this reason, the
FIFOs need to be asynchronous. An asynchronous FIFO
allows the data to be written into the FIFO with a clock
that is asynchronous to the clock used to read data from
the FIFO.

Data flows through the bus interface ASIC are as follows:

� Processor I/O write:

� The GSC interface receives both the address and the
data for the processor I/O write from the GSC bus and
loads them into the processor I/O FIFO.

� The PCI interface arbitrates for the PCI bus.

� The PCI interface unloads the address and data from
the processor I/O FIFO and masters the write on the
PCI bus.

� Processor I/O read:

� The GSC interface receives the address for the pro-
cessor I/O read from the GSC bus and loads it into the
processor I/O FIFO.

� The PCI interface arbitrates for the PCI bus.

� The PCI interface unloads the address from the pro-
cessor I/O FIFO and masters a read on the PCI bus.

� The PCI interface waits for the read data to return and
loads the data into the processor I/O read return FIFO.

� The GSC interface unloads the processor I/O read
return FIFO and places the read data on the GSC bus.

55 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

� DMA Write:

� The PCI interface receives both the address and the
data for the DMA write from the PCI bus and loads
them into the DMA FIFO.

� The PCI interface loads control information for the
write into the DMA transaction FIFO.

� The GSC interface arbitrates for the GSC bus.

� The GSC interface unloads the write command from
the DMA transaction FIFO, unloads the address and
data from the DMA FIFO, and masters the write on
the GSC bus.

� DMA Read:

� The PCI interface receives the address for the DMA
read from the PCI bus and loads it into the DMA FIFO.

� The GSC interface arbitrates for the GSC bus.

� The GSC interface unloads the address from the DMA
FIFO and masters a read on the GSC bus

� The GSC interface then waits for the read data to
return and loads the data into the DMA read return
FIFO.

� The PCI interface unloads the DMA read return FIFO
and places the read data on the PCI bus.

Architectural Challenges

One of the difficulties of joining two dissimilar I/O buses is
achieving peak I/O bus performance despite the fact that
the transaction structures are different for both I/O buses.
For example, transactions on the GSC bus are fixed length
with not more than eight words per transaction while
transactions on the PCI bus are of arbitrary length. It is
critical to create long PCI transactions to reach peak
bandwidth on the PCI bus. For better performance and
whenever possible, the bus interface ASIC coalesces mul-
tiple processor I/O write transactions from the GSC bus
into a single processor I/O write transaction on the PCI
bus. For DMA writes, the bus interface ASIC needs to de-
termine the optimal method of breaking variable-size PCI
transactions into one-, two-, four-, or eight-word GSC
transactions. The PCI interface breaks DMA writes into
packets and communicates the transaction size to
the GSC interface through the DMA transaction FIFO.

Another difficulty of joining two dissimilar I/O buses is
avoiding deadlock conditions. Deadlock conditions can
occur when a transaction begins on both the GSC and PCI
buses simultaneously. For example, if a processor I/O read
begins on the GSC bus at the same time a DMA read be-
gins on the PCI bus, then the processor I/O read will wait
for the DMA read to be completed before it can master its
read on the PCI bus. Meanwhile, the DMA read will wait
for the processor I/O read to be completed before it can
master its read on the GSC bus. Since both reads are wait-
ing for the other to be completed, we have a deadlock
case. One solution to this problem is to detect the dead-
lock case and retry or split one of the transactions to
break the deadlock. In general, the bus interface ASIC
uses the GSC split protocol to divide a GSC transaction
and allow a PCI transaction to make forward progress
whenever it detects a potential deadlock condition.

Unfortunately, the bus interface ASIC adds more latency
to the round trip of DMA reads. This extra latency can
have a negative affect on DMA read performance. The
C-class workstation has a greater latency on DMA reads
than the B-class workstation. This is due primarily to the
extra layer of bus bridges that the DMA read must traverse
to get to memory and back (refer to Figures 1 and 2).
The performance of DMA reads is important to outbound
DMA devices such as network cards and disk controllers.
The extra read latency is hidden by prefetching consecu-
tive data words from main memory with the expectation
that the I/O device needs a block of data and not just a
word or two.

Open Standard Challenges

The PCI bus specification, like most specifications, is not
perfect. There are areas where the specification is vague
and open to interpretation. Ideally, when we find a vague
area of a specification, we investigate how other design-
ers have interpreted the specification and follow the
trend. With a proprietary bus this often means simply con-
tacting our partners within HP and resolving the issue.
With an industry-standard bus, our partners are not within
the company, so resolving the issue is more difficult. The
PCI mail reflector, which is run by the PCI SIG at
www.pcsig.com, is sometimes helpful for resolving such
issues. Monitoring the PCI mail reflector also gives the

56 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

benefit of seeing what parts of the PCI specification ap-
pear vague to others. Simply put, engineers designing to
a standard need a forum for communicating with others
using that standard. When designing to an industry stan-
dard, that forum must by necessity include wide represen-
tation from the industry.

The PCI specification has guidelines and migration plans
that PCI card vendors are encouraged to follow. In prac-
tice, PCI card vendors are slow to move from legacy
standards to follow guidelines or migration plans. For
example, the PCI bus supports a legacy I/O* address
space that is small and fragmented. The PCI bus also has
a memory address space that is large and has higher write
bandwidth than the I/O address space. For obvious rea-
sons, the PCI specification recommends that all PCI cards
map their registers to the PCI I/O address space and the
PCI memory address space so systems will have the most
flexibility in allocating base addresses to I/O cards. In prac-
tice, most PCI cards still only support the PCI address I/O
space. Since we believed that the PCI I/O address space
would almost never be used, trade-offs were made in the
design of the bus interface ASIC that compromised the
performance of transactions to the PCI I/O address space.

Another example in which the PCI card vendors follow
legacy standards rather than PCI specification guidelines
is in the area of PCI migration from 5 volts to 3.3 volts.
The PCI specification defines two types of PCI slots: one
for a 5-volt signaling environment and one for a 3.3-volt
signaling environment. The specification also defines
three possible types of I/O cards: 5-volt only, 3.3-volt only,
or universal. As their names imply, 5-volt-only and 3.3-volt-
only cards only work in 5-volt and 3.3-volt slots respec-
tively. Universal cards can work in either a 5-volt or
3.3-volt slot. The PCI specification recommends that PCI
card vendors only develop universal cards. Even though
it costs no more to manufacture a universal card than a
5-volt card, PCI card vendors are slow to migrate to uni-
versal cards until volume platforms (that is, Intel-based
PC platforms) begin to have 3.3-volt slots.

Verification

Verification Methodology and Goals

The purpose of verification is to ensure that the bus inter-
face ASIC correctly meets the requirements described in

* Legacy refers to the Intel I/O port space.

the design specification. In our VLSI development process
this verification effort is broken into two distinct parts
called phase-1 and phase-2. Both parts have the intent of
proving that the design is correct, but each uses different
tools and methods to do so. Phase-1 verification is carried
out on a software-based simulator using a model of the
bus interface ASIC. Phase-2 verification is carried out on
real chips in real systems.

Phase-1. The primary goals of phase-1 verification can be
summarized as correctness, performance, and compliance.
Proving correctness entails showing that the Verilog model
of the design properly produces the behavior detailed in
the specification. This is done by studying the design
specification, enumerating a function list of operations
and behaviors that the design is required to exhibit, and
generating a suite of tests that verify all items on that
function list. Creating sets of randomly generated trans-
action combinations enhances the test coverage by expos-
ing the design to numerous corner cases.

Performance verification is then carried out to prove that
the design meets or exceeds all important performance
criteria. This is verified by first identifying the important
performance cases, such as key bandwidths and latencies,
and then generating tests that produce simulated loads
for performance measurement.

Finally, compliance testing is used to prove that the bus
protocols implemented in the design will work correctly
with other devices using the same protocol. For a de-
sign such as the bus interface ASIC that implements an
industry-standard protocol, special consideration was
given to ensure that the design would be compatible with
a spectrum of outside designs.

Phase-2. This verification phase begins with the receipt
of the fabricated parts. The effort during this phase is pri-
marily focused on testing the physical components, with
simulation techniques restricted to the supporting role of
duplicating and better understanding phenomenon seen
on the bench. The goals of phase-2 verification can be
summarized as compliance, performance, and compati-
bility. Therefore, part of phase-2 is spent proving that the
physical device behaves on the bench the same as it did
in simulation. The heart of phase-2, however, is that the
design is finally tested for compatibility with the actual
devices that it will be connected to in a production system.

57 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Verification Challenges

From the point of view of a verification engineer, there
are benefits and difficulties in verifying the implementa-
tion of an industry-standard bus as compared to a pro-
prietary bus. One benefit is that since PCI is an industry
standard, there are plenty of off-the-shelf simulation and
verification tools available. The use of these tools greatly
reduces the engineering effort required for verification,
but at the cost of a loss of control over the debugging and
feature set of the tools.

The major verification challenge (particularly in phase-1)
was proving compliance with the PCI standard. When
verifying compliance with a proprietary standard there
are typically only a few chips that have to be compatible
with one another. The design teams involved can resolve
any ambiguity in the bus specification. This activity tends
to involve only a small and well-defined set of individuals.
In contrast, when verifying compliance with an open stan-
dard there is usually no canonical source that can provide
the correct interpretation of the specification. Therefore,
it is impossible to know ahead of time where devices will
differ in their implementation of the specification. This
made it somewhat difficult for us to determine the specific
tests required to ensure compliance with the PCI standard.
In the end, it matters not only how faithfully the specifica-
tion is followed, but also whether or not the design is com-
patible with whatever interpretation becomes dominant.

The most significant challenge in phase-2 testing came in
getting the strategy to become a reality. The strategy de-
pended heavily on real cards with real drivers to demon-
strate PCI compliance. However, the HP systems with
PCI slots were shipped before any PCI cards with drivers
were supported on HP workstations. Creative solutions
were found to develop a core set of drivers to complete
the testing. However, this approach contributed to having
to debug problems closer to shipment than would have
been optimal. Similarly, 3.3-volt slots were to be sup-
ported at first shipment. The general unavailability of
3.3-volt or universal (supporting 5 volts and 3.3 volts)
cards hampered this testing. These are examples of the
potential dangers of “preenabling” systems with new
hardware capability before software and cards to use
the capability are ready.

An interesting compliance issue was uncovered late in
phase-2. One characteristic of the PA 8000 C-class system
is that when the system is heavily loaded, the bus interface

ASIC can respond to PCI requests with either long read
latencies (over 1 µs before acknowledging the transaction)
or many (over 50) sequential PCI retry cycles. Both behav-
iors are legal with regard to the PCI 2.0 bus specification,
and both of them are appropriate given the circumstances.
However, neither of these behaviors is exhibited by Intel’s
PCI chipsets, which are the dominant implementation of
the PCI bus in the PC industry. Several PCI cards worked
fine in a PC, but failed in a busy C-class system. The PCI
card vendors had no intention of designing cards that
were not PCI compliant, but since they only tested their
cards in Intel-based systems, they never found the prob-
lem. Fortunately, the card vendors agreed to fix this issue
on each of their PCI cards. If there is a dominant imple-
mentation of an industry standard, then deviating from
that implementation adds risk.

Firmware

Firmware is the low-level software that acts as the inter-
face between the operating system and the hardware.
Firmware is typically executed from nonvolatile memory
at startup by the workstation. We added the following
extensions to the system firmware to support PCI:

� A bus walk to identify and map all devices on the PCI
bus

� A reverse bus walk to configure PCI devices

� Routines to provide boot capability through specified
PCI cards.

The firmware bus walk identifies all PCI devices con-
nected to the PCI bus and records memory requirements
in a resource request map. When necessary, the firmware
bus walk will traverse PCI-to-PCI bridges.* If a PCI device
has Built-in Self Test (BIST), the BIST is run, and if it fails,
the PCI device is disabled and taken out of the resource
request map. As the bus walk unwinds, it initializes bridges
and allocates resources for all of the downstream PCI
devices.

Firmware also supports booting the HP-UX operating sys-
tem from two built-in PCI devices. Specifically, firmware
can load the HP-UX operating system from either a disk
attached to a built-in PCI SCSI chip or from a file server
attached to a built-in PCI 100BT LAN chip.

* A PCI-to-PCI bridge connects two PCI buses, forwarding transactions from one to the
other.

58 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Firmware Challenges

The first challenge in firmware was the result of another
ambiguity in the PCI specification. The specification does
not define how soon devices on the PCI bus must be ready
to receive their first transaction after the PCI bus exits
from reset. Several PCI cards failed when they were
accessed shortly after PCI reset went away. These cards
need to download code from an attached nonvolatile
memory before they will work correctly. The cards begin
the download after PCI reset goes away, and it can take
hundreds of milliseconds to complete the download. Intel
platforms delay one second after reset before using the
PCI bus. This informal compliance requirement meant
that firmware needed to add a routine to delay the first
access after the PCI bus exits reset.

Interfacing with other ASICs implementing varying levels
of the PCI specification creates additional challenges.
Compliance with PCI 2.0 (PCI-to-PCI) bridges resulted in
two issues for firmware. First, the bridges added latency to
processor I/O reads. This extra latency stressed a busy
system and caused some processor I/O reads to timeout
in the processor and bring down the system. The firm-
ware was changed so that it would reprogram the proces-
sor timeout value to allow for this extra delay. The second
issue occurs when PCI 2.0 bridges are stacked two or
more layers deep. It is possible to configure the bridges
such that the right combination of processor I/O reads
and DMA reads will cause the bridges to retry each others
transactions and cause a deadlock or starve one of the
two reads. Our system firmware fixes this problem by
supporting no more than two layers of PCI-to-PCI bridges
and configuring the upstream bridge with different retry
parameters than the downstream bridge.

Operating System Support

The HP-UX operating system contains routines provided
for PCI-based kernel drivers called PCI services. The first
HP-UX release that provides PCI support is the 10.20 re-
lease. An infrastructure exists in the HP-UX operating
system for kernel-level drivers, but the PCI bus introduced
several new requirements. The four main areas of direct
impact include context dependent I/O, driver attachment,
interrupt service routines (ISR), and endian issues. Each
area requires special routines in the kernel’s PCI services.

Context Dependent I/O

In the HP-UX operating system, a centralized I/O services
context dependent I/O (CDIO) module supplies support
for drivers that conform to its model and consume its
services. Workstations such as the C-class and B-class
machines use the workstation I/O services CDIO (WSIO
CDIO) for this abstraction layer. The WSIO CDIO provides
general I/O services to bus-specific CDIOs such as EISA
and PCI. Drivers that are written for the WSIO environ-
ment are referred to as WSIO drivers. The services pro-
vided by WSIO CDIO include system mapping, cache
coherency management, and interrupt service linkage. In
cases where WSIO CDIO does need to interface to the I/O
bus, WSIO CDIO translates the call to the appropriate bus
CDIO. For the PCI bus, WSIO CDIO relies on services in
PCI CDIO to carry out bus-specific code.

Ideally, all PCI CDIO services should be accessed only
through WSIO CDIO services. However, there are a
number of PCI-specific calls that cannot be hidden with
a generic WSIO CDIO interface. These functions include
PCI register operations and PCI bus tuning operations.

Driver Attachment

The PCI CDIO is also responsible for attaching drivers to
PCI devices. The PCI CDIO completes a PCI bus walk,
identifying attached cards that had been set up by firm-
ware. The PCI CDIO initializes data structures, such as
the interface select code (ISC) structure, and maps the
card memory base register. Next, the PCI CDIO calls the
list of PCI drivers that have linked themselves to the PCI
attach chain.

The PCI driver is called with two parameters: a pointer
to an ISC structure (which contains mapping information
and is used in most subsequent PCI services calls) and an
integer containing the PCI device’s vendor and device IDs.
If the vendor and device IDs match the driver’s interface,
the driver attach routine can do one more check to verify
its ownership of the device by reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space. If the driver does own this PCI device, it typically
initializes data structures, optionally links in an interrupt
service routine, initializes and claims the interface, and
then calls the next driver in the PCI attach chain.

59 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Interrupt Service Routines

The PCI bus uses level-sensitive, shared interrupts. PCI
drivers that use interrupts use a WSIO routine to register
their interrupt service routine with the PCI CDIO. When a
PCI interface card asserts an interrupt, the operating sys-
tem calls the PCI CDIO to do the initial handling. The PCI
CDIO determines which PCI interrupt line is asserted and
then calls each driver associated with that interrupt line.

The PCI CDIO loops, calling drivers for an interrupt line
until the interrupt line is deasserted. When all interrupt
lines are deasserted, the PCI CDIO reenables interrupts
and returns control to the operating system. To prevent
deadlock, the PCI CDIO has a finite (although large) num-
ber of times it can loop through an interrupt level before
it will give up and leave the interrupt line disabled. Once
disabled, the only way to reenable the interrupt is to re-
boot the system.

PCI Endian Issues

PCI drivers need to be cognizant of endian issues.* The
PCI bus is inherently little endian while the rest of the
workstation hardware is big endian. This is only an issue
with card register access when the register is accessed in
quantities other than a byte. Typically there are no endian
issues associated with data payload since data payload is
usually byte-oriented. For example, network data tends
to be a stream of byte data. The PCI CDIO provides one
method for handling register endian issues. Another
method lies in the capability of some PCI interface chips
to configure their registers to be big or little endian.

Operating System Support Challenges

We ran into a problem when third-party card developers
were porting their drivers to the HP-UX operating system.
Their drivers only looked at device and vendor identifiers
and claimed the built-in LAN inappropriately. Many PCI
interface cards use an industry-standard bus interface
chip as a front end and therefore share the same device
and vendor IDs. For example, several vendors use the
Digital 2114X family of PCI-to-10/100 Mbits/s Ethernet
LAN controllers, with each vendor customizing other
parts of the network interface card with perhaps different
physical layer entities. It is possible that a workstation

* Little endian and big endian are conventions that define how byte addresses are as-
signed to data that is two or more bytes long. The little endian convention places bytes
with lower significance at lower byte addresses. (The word is stored “little-end-first.”)
The big endian convention places bytes with greater significance at lower byte ad-
dresses. (The word is stored “big-end-first.”)

could be configured with multiple LAN interfaces having
the same vendor and device ID with different subsystem
IDs controlled by separate drivers. A final driver attach-
ment step was added to verify the driver’s ownership of
the device. This consisted of reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space.

The HP-UX operating system does not have the ability to
allocate contiguous physical pages of memory. Several
PCI cards (for example, SCSI and Fibre Channel) require
contiguous physical pages of memory for bus master task
lists. The C-class implementation, which allows virtual
DMA through TLB (translation lookaside buffer) entries,
is capable of supplying 32K bytes of contiguous memory
space. In the case of the B-class workstation, which does
not support virtual DMA, the team had to develop a work-
around that consisted of preallocating contiguous pages
of memory to enable this class of devices.

Conclusion

PCI and Interoperability. We set out to integrate PCI into
the HP workstations. The goal was to provide our systems
with access to a wide variety of industry-standard I/O
cards and functionality. The delivery of this capability
required the creation and verification of a bus interface
ASIC and development of the appropriate software sup-
port in firmware and in the HP-UX operating system.

Challenges of Interfacing with Industry Standards. There
are many advantages to interfacing with an industry
standard, but it also comes with many challenges. In de-
fining and implementing an I/O bus architecture, perfor-
mance is a primary concern. Interfacing proprietary and
industry-standard buses and achieving acceptable perfor-
mance is difficult. Usually the two buses are designed with
different goals for different systems, and determining the
correct optimizations requires a great deal of testing and
redesign.

Maintaining compliance with an industry standard is an-
other major challenge. It is often like shooting at a moving
target. If another vendor ships enough large volumes of a
nonstandard feature, then that feature becomes a de facto
part of the standard. It is also very difficult to prove that
the specification is met. In the end, the best verification
techniques for us involved simply testing the bus interface
ASIC against as many devices as possible to find where the
interface broke down or performed poorly.

60 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

Finally, it is difficult to drive development and verification
unless the functionality is critical to the product being
shipped. The issues found late in the development cycle
for the bus interface ASIC could have been found earlier
if the system had required specific PCI I/O functionality
for initial shipments. The strategy of preenabling the
system to be PCI compatible before a large number of
devices became available made it difficult to achieve the
appropriate level of testing before the systems were
shipped.

Successes. The integration of PCI into the HP workstations
through design and verification of the bus interface ASIC
and the development of the necessary software components
has been quite successful. The goals of the PCI integration
effort were to provide fully compatible, high-performance
PCI capability in a cost-effective and timely manner. The
design meets or exceeds all of these goals. The bandwidth
available to PCI cards is within 98 percent of the bandwidth
available to native GSC cards. The solution was ready in
time to be shipped in the first PCI-enabled HP workstations
B132, B160, C160, and C180.

The bus-bridge ASIC and associated software have since
been enhanced for two new uses in the second generation
of PCI on HP workstations. The first enhancement pro-
vides support for the GSC-to-PCI adapter to enable specific

PCI functionality on HP server GSC I/O cards. The sec-
ond is a version of the bus interface supporting GSC-2x
(higher bandwidth GSC) and 64-bit PCI for increased
bandwidth to PCI graphics devices on HP C200 and C240
workstations.

Acknowledgments

This article is a summary of some of the challenges expe-
rienced by numerous team members involved in the inte-
gration of PCI into workstations. We would like to specifi-
cally thank several of those team members who helped
contribute to and review this article. George Letey, Frank
Lettang, and Jim Peterson assisted with the architecture
section. Vicky Hansen, Dave Klink, and J.L. Marsh
provided firmware details. Matt Dumm and Chris Hyser
reviewed the operating system information.

References

1. W. Bryg, K. Chan, and N. Fiduccia, “A High-Performance, Low-
Cost Multiprocessor Bus for Workstations and Midrange Servers,”
Hewlett-Packard Journal, Vol. 47, no. 1, February 1996, p. 18.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configurations)
on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of the The Open Group.

61 May 1998 • The Hewlett-Packard JournalArticle 8 • 1998 Hewlett Packard Company

��� 	� 	����

A project manager at the

HP Workstation Systems

Division, Ric Lewis was

responsible for managing the development

of the PCI bus interface ASIC. He came to HP

in 1987 after receiving a BSEE degree from

Utah State University. He also has an MSEE

degree (1993) from Stanford University and

an MBA (1992) from Santa Clara University.

Ric was born in Twin Falls, Idaho, and he is

married and has one son. His outside interests

include basketball, mountain biking, and

skiing.

���� �� ������

Erin Handgen is a techni-

cal contributor at the HP

Workstation Systems

Division working on ASICs for HP work-

stations. He was the lead engineer for the PCI

bus interface ASIC during the shipment phase.

He has a BS degree in computer and electrical

engineering (1986) and an MSEE degree

(1988) from Purdue University. He joined HP

in 1988. Born in Warsaw, Indiana, he is mar-

ried and has three children. His outside inter-

ests include astronomy, camping, and hiking.

������ �� ���������

A hardware design engi-

neer at the HP Fort Col-

lins Systems Laboratory,

Nicholas Ingegneri was the lead verification

engineer for the PCI bus interface ASIC. He

has a BSEE degree (1989) from the Univer-

sity of Nevada at Reno and an MSEE degree

(1994) from Stanford University. He came

to HP in 1990. His outside interests include

travel and camping.

���� �� ��������

Glen Robinson is a tech-

nical contributor at the

HP Workstation Systems

Division. He came to HP in 1979 and was re-

sponsible for the subsystem test for the PCI

network and kernel drivers. He has an MBA

degree (1979) from Chapman College. Born

in Santa Monica, California, he is married and

has two grown children. He enjoys biking and

AKC hunting tests with Labrador retrievers.

http://www.hp.com/hpj/98may/ma98a9.htm
http://www.hp.com/hpj/journal.html

62 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Linking Enterprise Business Systems to the
Factory Floor

Information is the fuel that drives today’s business enterprises. The ability

to link different components in the enterprise together in a user-friendly and

transparent manner increases the effectiveness of companies involved in

manufacturing and production.

Computers have had a profound effect on how companies conduct

business. They are used to run enterprise business software and to automate

factory-floor production. While this has been a great benefit, the level of

coordination between computers running unrelated application software is

usually limited. This is because such data transfers are difficult to implement,

often requiring manual intervention or customized software. Until recently,

off-the-shelf data transfer solutions were not available.

HP Enterprise Link is a middleware software product that increases the

effectiveness of companies involved in manufacturing and production. It allows

business management software running at the enterprise level, such as SAP’s

R/3 product, to exchange information (via electronic transfer) with software

applications running on the factory floor. It also allows software applications

running on the factory floor to exchange information with each other.

HP Enterprise Link is available for HP 9000 computers running the HP-UX*

operating system and PC platforms running Microsoft’s Windows NT

operating system.

This article will discuss the evolution of the link between business software

systems and factory automation systems, and the functionality provided in HP

Enterprise Link to enable these two environments to communicate.

Background

Initially, only large corporations could afford computers. They ran batch-

oriented enterprise business software to do payroll, scheduling, and inventory.

���� �� ����	�

���� �� ����	�

Kenn Jennyc is a software

engineer at the HP Lake

Stevens Division. He

worked on the software design, development,

and quality assurance for the HP Enterprise

Link. Before that he worked on software design

and development for the RTAP (real-time appli-

cation platform) product. He received a BSEE

degree from the University of Calgary in 1983

and came to HP in 1989. Kenn was born in

Calgary, Alberta, Canada, is married, and has

two children. In his spare time he likes to fly

his home-built aircraft and dabble in analog

electronics.

63 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

As the cost of computing dropped, smaller companies
began using computers to run business software, and
companies involved in manufacturing began using them
to automate factory-floor production.

Although factory-floor automation led to improved effi-
ciency and productivity, it was usually conducted on a
piecemeal basis. Different portions of an assembly line
were often automated at different times and often with
different computer equipment, depending on the capabil-
ities of computer equipment available at the time of
purchase. As a result, today’s factory-floor computers are
usually isolated hosts, dedicated to automating selected
steps in production. While various factory-floor functions
are automated, they do not necessarily communicate with
one another. They are isolated in “islands of automation.”
To make matters worse, the development of program-
mable logic controllers (PLCs) and other dedicated “smart”
factory-floor devices has increased the number of isolated
computers, making the goal of integrated factory-floor
computation that much harder to achieve.

While production software was generally used for smaller,
more isolated problems, business software was used to
solve larger company-wide problems. Furthermore, while

production software was more real-time oriented, busi-
ness software was more transaction and batch oriented.
These differing needs caused business systems to evolve
with little concern for the kind of computing found on the
factory floor. Similarly, production systems evolved with
little concern for the kind of computing found at the
enterprise level. As a result, many enterprise-level business
systems and factory-floor computers are not able to inter-
communicate. Figure 1 shows an example of the com-
ponents that make up a typical enterprise and factory-
floor environment.

The net effect is that today companies find it difficult and
expensive to integrate factory-floor systems with each
other and with business software running at the enterprise
level. This is unfortunate because the dynamic nature of
the marketplace and the desire to reduce inventory levels
have made the need for such integration very high.

Marketplace Dynamics

Over the last decade, the marketplace has become in-
creasingly dynamic, forcing businesses to adapt ever more
quickly to changing market conditions. Computer systems
now experience a continuous stream of modifications and

Figure 1

Computing at the enterprise and factory-floor levels.

Enterprise Business System

Payroll Scheduling Inventory

Factory 1 Factory 2

Component
Pick-and-Place

Station

Wave Solder
Station PLC Station

Mixing
Machine
Station

Electronic
Bottle

Inspector

Enterprise
Level

Factory-Floor
Level

64 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

upgrades. Generally, this has forced business systems to
adopt more real-time behaviors and production systems to
become more flexible. It has also increased the frequency
and volume of data transferred between business and
production systems and between the many production
systems.

There has always been a requirement to transfer informa-
tion between computers in an organization, both horizon-
tally between computers at the same functional level, and
vertically between computers at different functional levels.
In the past, manual data entry was an often-used approach.
Hard-copy printouts generated by business management
systems would be provided to operators who manually
entered the information into one or more production
systems. Although this was an acceptable approach in the
past, such an approach is not sufficiently responsive in
today’s dynamic business environment. As a result, the
need for electronic data transfer capability between the
various business management and production level
computers is now very high.

Electronic Data Transfers

Integrated business software with built-in support for
data transfers between components is sometimes used
at the business management level. While this minimizes
the effort required to exchange data between the various
components of enterprise business systems, it is often
inflexible and restrictive with regard to what can be
exchanged and when exchanges occur.

Organizations that use a variety of business software
packages, rather than a single integrated package, have
typically developed custom software for electronic data
transfers between packages. Unfortunately, marketplace
dynamics require custom software to be constantly re-
worked. This ongoing rework forces companies to either
maintain in-house programming expertise or repeatedly
hire software consultants to implement needed changes.
As a result, custom data transfer software is not only ex-
pensive to develop but also costly to maintain—especially
if changes must be implemented on short notice.

On the factory floor, software programmers have been
employed to develop custom data transfer solutions that
allow the different islands of automation to communicate.
As previously noted, this approach is difficult to implement
and expensive to maintain. In addition, this approach is
often inflexible since the resulting software is usually

developed assuming that the configuration of factory-
floor systems is largely static.

When new equipment and application software are to be
integrated into the overall system, software programmers
don’t just prepare additional custom software. They must
also modify the existing custom software for all applica-
tions involved. For this reason, custom software is often
avoided, and electronic data transfer capability is fre-
quently confined to transfers between equipment and
software supplied by the same manufacturer.

Differences in hardware (and associated operating sys-
tems) and differences in the software applications them-
selves cause numerous application integration problems.
Here are a few examples:

� Data from applications running on computers that
have proprietary hardware architectures and operating
systems is often not usable on other systems.

� Different applications use different data types according
to their specific needs.

� Incompatible data structures often result because of the
different groupings of data elements by software applica-
tions. For example, an element with a common logical
definition in two applications may still be stored with
two different physical representations.

� Applications written in different languages sometimes
interpret their data values differently. For example
C and COBOL interpret binary numeric data values
differently.

What is needed, therefore, is an off-the-shelf product that
is specifically designed to interconnect applications that
were not originally designed to work together. That
product must automatically, quickly, efficiently, and cost-
effectively integrate applications having incompatible
programming interfaces at the same or different func-
tional levels of an organization. HP Enterprise Link is
such a product.

HP Enterprise Link is an interactive point-and-click soft-
ware product that is used to connect software applica-
tions (such as business planning and execution systems)
to control supervisory systems found on the factory floor.
HP Enterprise Link greatly reduces the cost and effort
required to interconnect such systems while eliminating
the need for custom software.

65 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

The Data Transfer Problem

The problem of transferring data from one software appli-
cation to another is conceptually simple: just fetch the data
from one system and place it in another. In practice the
problem is more complex. The following issues arise when
trying to implement electronic data transfer solutions:

� There must be a way to obtain data from the software
application serving as the data source. Such access, for
example, might be provided by a library of callable C
functions.

� There must be a way to forward data to the software
application serving as the data destination. For example,
data might be placed in messages that are sent to the
destination application.

� There must be a specification of exactly what to fetch
from the source application and exactly where to place
it in the destination application.

� The data being transferred must be translated from
the format provided by the data source to the format
required by the data destination.

� There must be a specification of the circumstances
under which data should be transferred and a way to
detect when these circumstances occur.

All of these issues are addressed in HP Enterprise Link.

HP Enterprise Link

HP Enterprise Link product consists of the three compo-
nents shown in Figure 2:

� An interactive configuration tool. This interactive
window-based application allows users to direct the
movement of data between two software applications.

� A data server. This noninteractive process runs in the
background. It moves data in accordance with the direc-
tives that the user specified with the configuration tool.

� Configuration files. This is the set of mappings and
trigger criteria created by users. The data is stored in
configuration files. These files are created and modified
by the configuration tool and read by the data server.

Linking Components

The HP Enterprise Link components listed above have the
common goal of enabling users to create middleware that

Figure 2

The components of HP Enterprise Link.

Configuration
Tool

Data Server

Configuration
Files

Software
Application

Software
Application

maps components with different interfaces together for
data transfer.

In HP Enterprise Link, the combination of a single source
address and a single destination address is called a map-

ping. A unit of data at the specified source address is said
to be mapped to the specified destination address. In
other words, it can be read from the specified source
address and written to the specified destination address.

Although a mapping deals with the transfer of a single
unit of data, real-world situations usually require the
transfer of many units of data simultaneously. Therefore,
HP Enterprise Link collects mappings into groups called
methods. A method contains one or more mappings.

Mappings describe what to transfer and where to transfer
it, whereas triggers describe exactly when to do the
transfer. Data is actually transferred whenever a specified
trigger condition is satisfied. This condition is called the
trigger criterion. There are many possible trigger criteria
such as:

� Whenever a unit of data at a specified source address
changes value

� Whenever a unit of data at a specified source address is
set to a specified value

� Whenever the source data becomes available—such as
arriving in a message

� At a preset time of the day or a preset day of the week.

66 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

HP Enterprise Link considers trigger criteria to be part of
the definition of a method. All the mappings for a single
method share the same trigger criteria. Whenever the
trigger criteria are met, HP Enterprise Link transfers—in
unison—all the data specified by the method’s mappings.

Multiple methods can simultaneously exist in HP Enter-
prise Link. For example, a user can create one method to
transfer a particular production recipe from a business
enterprise system down to a factory-floor control system.
Conversely, raw-material consumption information for
the recipe currently in production could be transferred
periodically from the factory-floor control system up to
the business enterprise system, using a second method.

The Configuration Tool

The HP Enterprise Link configuration tool provides users
with a view of each software application’s name space,
and the tool graphically depicts what data to transfer and
under what circumstances such transfers should occur
(Figure 3).

The HP Enterprise Link configuration tool is composed
of communication objects and a graphical user interface
(GUI). Communication objects are used to obtain name-
space data that is unique to each application and to pro-
vide application-specific windows. The configuration tool
provides the user with an easy-to-use point-and-click style
GUI.

Figure 3

The HP Enterprise Link configuration tool.

GUI

Configuration
Files

Software
Application

Software
Application

Communication
Object

Communication
Object

All dependencies on particular software applications are
encapsulated in communication objects. The configura-
tion tool’s communication objects provide the following
functionality:

� They fetch namespace information from communicating
software applications for presentation to the user.

� They provide routines to create and manage application
dependent control panel widgets, such as those used
to specify triggers unique to a particular software
application.

� They provide routines to tell the GUI exactly what func-
tionality is supported by a communication object. For
example, can the application software serve only as a
data source (supply data values), or can it serve as both
a data source and a data destination (both supply and
use data values)?

There are three important windows in the configuration
tool’s GUI: the Edit Method window, the Edit Mapping
window, and the Trigger Configuration window.

Edit Mapping. The Edit Mapping window is used to create
new mappings (Figure 4). The namespaces of both the
source software application and the destination software
application are shown. They are graphically displayed
as tree diagrams. This makes it easy for users to specify
which data to move where. They don’t have to remember
the names of data sources or data destinations. Instead
they just choose from the displayed list of possibilities.
The side-by-side display of application namespaces makes
it much easier to integrate the applications.

Tree diagrams are used because they make large name-
spaces manageable. A linear namespace display was
rejected early in the design of HP Enterprise Link because
a flat list representation would only be manageable with
software applications having a small namespace. Another
advantage of tree diagrams is that most users are already
familiar with them from file selector windows found in
many software applications.

To create a new mapping the user selects an item from
the Mapping Source tree diagram and an item from the
Mapping Destination tree diagram, and then clicks the Add
Mapping button. A new mapping is added to the mapping
table displayed on the Edit Method window (Figure 5).

67 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 4

The Edit Mapping window.

Multiple static mappings can be created in a single step
using branch assignments. This requires that the last com-
ponent of the source and destination addresses be identi-
cal (so that appropriate mappings can be automatically
created). Mappings can also be automatically created at
the time methods are triggered. This is called dynamic
mapping and requires the user to specify algorithms that
can select source addresses and transform these addresses
to valid destination addresses.

Edit Method. The Edit Method window (Figure 5) displays
a method’s mappings as a two-column table titled Map-
pings. Source addresses appear in the left column and
destination addresses appear in the right. The data server
transfers mapped data from source addresses to destina-
tion addresses in the same order as the mappings are
listed in this table. The Mappings table makes mappings
both explicit and intuitive to the user.

This window allows the user to specify in which direction
to transfer data. All of a method’s mappings specify data
transfers in one direction—from one software application
to another. The Edit Method window also allows the user
to specify how to respond to errors that occur during data
transfers. This will be described later in more detail.

Trigger Configuration. The Trigger Configuration window
is used to define trigger criteria (Figure 6). This window
displays all possible triggers to the user, as well as the
currently configured trigger criteria. The Trigger Configura-
tion window is designed to make setting up trigger criteria
explicit and intuitive for the user.

The Trigger Configuration window is split into three groups:
time triggers, triggers unique to the source application,
and triggers unique to the destination application. Time
triggers allow the user to specify that data mapping start

68 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 5

The Edit Method window.

at some specified time and repeat at a specified time
interval, but be synchronized to a specified hour/minute/
second of the day/hour/minute.

Triggers unique to the source application, such as the
RTAP (real-time application platform) triggers shown in
Figure 6, allow data to be mapped when something inter-
esting happens in the source application. For the RTAP
triggers in Figure 6 interesting events include a database
value change or the occurrence of an RTAP database
alarm. Data can also be mapped when something interest-
ing happens in the destination application.

Thus, triggers allow data transfers to be pushed from the
source application, pulled from the destination applica-
tion, or scheduled by time.

Summary. Using the windows just described, users can
create methods with the configuration tool. These methods
specify one or more mappings and associated trigger
criteria. This information is saved in one or more configu-
ration files. The data server then reads these configuration
files to implement the user’s methods.

The Data Server

The HP Enterprise Link data server is composed of com-
munication objects, a trigger manager, and a mapping

Figure 6

The Trigger Configuration window.

engine (Figure 7). Communication objects deal with the
problems of generating triggers and getting data into and
out of software applications. The trigger manager deals
with dispersing Trigger Configuration data, coordinating
trigger events, and notifying the mapping engine of trigger
events. The mapping engine deals with the problems of
reading configuration files, responding to triggers, mapping
source addresses to destination addresses, and transform-
ing the data as it is being mapped.

All software-application dependencies are encapsulated
in communication objects. Communication objects serve
as translators between external software applications and
the data server’s mapping engine—they translate the
software application’s native application program inter-
face (API) to the interface used by the mapping engine.

The interface between a communication object and the
mapping engine is standardized, with all communication
objects using the same interface. For data that is being
transferred, the interface consists solely of address-value
pairs, where the address is from the application soft-
ware’s namespace, and the value is encoded in a neutral
form. Thus a communication object only needs to be

69 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 7

The components of the HP Enterprise Link data server.

Configuration
Files

Software
Application

Communication
Object

Trigger
Manager

Mapping
Engine

Software
Application

Communication
Object

Data Server

aware of its own namespace and how to convert between
the software application’s proprietary data formats and
the neutral HP Enterprise Link data format. For triggers,
the interface consists of well-documented interactions
between the trigger manager and the communication
objects.

Communication objects are usually distributed. They are
split into two parts that are interconnected by a communi-
cation channel such as a TCP/IP socket. One part of the
object is incorporated into the HP Enterprise Link data
server process, while the other runs on the same machine
as the corresponding software application. When a com-
munication object is not split into two parts, the object,
the data server, and the software application must run on
the same machine.

Communication objects communicate with their corre-
sponding software applications through whatever mecha-
nism is available. For example, this could be through a
serial port, shared memory, shared files, TCP/IP sockets,
or an application program interface (API).

When a communication object transfers data, it translates
data between the format used by the source software ap-
plication and the neutral format required by the mapping
engine. For example, for numeric values, a communica-
tion object may have to translate between binary IEEE-754
floating-point format and the mapping engine’s neutral
format.

In practice, not all data transfer attempts will be success-
ful. For example, a particular source address might have
been deleted, or a destination address may no longer
exist. The configuration tool is used to specify what the
mapping engine should do in this situation, and the data
server must detect the condition and deal with it appro-
priately. When data transfer attempts fail, the user can
have the data server do any one of the following:

� Continue mapping data (ignoring the error)

� Abort all subsequent mappings associated with the
current method

� Abort all subsequent mappings and all subsequent
methods triggered by the current trigger event (if
multiple methods were simultaneously triggered).

The interface between the communication object and
the mapping engine is designed to support transaction-
oriented data transfers, using commit and rollback. This
functionality comes into play when mapping attempts fail.
It allows the data server to undo (roll back) all data trans-
fers done in all currently processed mappings associated
with the method’s current trigger event.

The Running Data Server

When the HP Enterprise Link data server starts up, it reads
the configuration files that the user created with the con-
figuration tool. It then prepares to deal with the specified

70 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

trigger criteria, usually by notifying the appropriate
communication object to detect it. Finally, it enters an
event-driven mode, waiting for the trigger criteria of any
configured method to be satisfied.

When either a source or destination communication
object in the data server detects that a method’s trigger
criteria have been satisfied, the object informs the data
server trigger manager that a method has been triggered.
This starts the mapping engine. Alternatively, if the data
server trigger manager detects that a method’s time-based
trigger criteria have been satisfied, the mapping engine
starts.

When triggered, the mapping engine requests that the
source communication object provide the current data
values at the method’s configured source addresses. The
source communication object obtains these values from
the software application, translates the format of all
fetched data values to a neutral format, and passes the
result to the mapping engine as address-value pairs, with
one such pair for each of the method’s defined mappings.

The data server mapping engine looks up the destination
address that corresponds to each source address. This
lookup results in a new list of address-value pairs, with
the address now being the destination address, and the
value unchanged (and still expressed in the mapping
engine’s neutral format). To minimize the impact on per-
formance, this lookup is implemented using a hash table.

The mapping engine sends the new list of address-value
pairs to the destination communication object. The des-
tination communication object converts the received
values into the format required by the destination software
application, and writes the converted result to the speci-
fied addresses in the destination software application.

Communication Objects and Software Applications

There are two fundamental ways for software applications
to provide communication objects access to their data:
the request-reply method and the spontaneous-message

method.

In the request-reply method, the communication object
sends a software application the address of a wanted data
unit in a request and receives its current value in a reply.
With this method the communication object controls the
data transfer. It determines which unit of data to read and
when to read it. Structured Query Language (SQL) and

real-time databases are two examples of software applica-
tions that employ the request-reply method.

In the spontaneous-message method, communication ob-
jects receive data, usually as messages, from the software
application whenever the application chooses to send it.
With this method the software application controls the
data transfer. It determines which data to provide and
when to provide it. SAP’s R/3 product is an example of
a software application using the spontaneous-message
method.

The method that a software application employs to provide
external data access determines the trigger criteria that
are possible for that application’s communication object.
The request-reply method allows event, value, and time-
based trigger criteria since the communication object
controls the data transfer. The spontaneous message
method is limited to value-based triggering (essentially
filtering) because the software application providing the
data controls the data transfer.

Spooling

The HP Enterprise Link data server’s communication
objects must cope with communication failures. This
means that outgoing data must be locally buffered until
a communication object verifies that the application soft-
ware, when acting as a destination, has successfully re-
ceived it. It also means that incoming data must either be
safely transferred through the mapping engine or locally
buffered when a communication object accepts data from
the source application software.

Spooling is especially important if the source application
is separated from the HP Enterprise Link data server by
a wide area network (WAN). WANs are considerably less
reliable than local area networks, and thus are more likely
to lose data.

In a typical HP Enterprise Link installation the data server
runs on a machine located near or on the factory floor.
Production orders are downloaded from the enterprise
level to HP Enterprise Link as soon as they are available.
The downloaded data is buffered at the factory until it is
needed. Using HP Enterprise Link in this way reduces the
probability that the factory would lack unprocessed pro-
duction orders if the WAN is down for a prolonged period
of time.

71 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Buffered data must be preserved even if the HP Enterprise
Link host machine is shut down or crashes. To do this, HP
Enterprise Link stores buffered data in disk-resident spool
files.

The amount of storage used to hold buffered data must be
restricted to protect the host computer from failure caused
by insufficient resources. HP Enterprise Link can limit the
size of spool files by controlling:

� The maximum size of spool storage

� The maximum number of messages buffered

� The age of the oldest message buffered.

The user can set any one or all of these limits, using the
HP Enterprise Link configuration tool.

Tracing

HP Enterprise Link allows the data being transferred
to be monitored by the user. The monitoring is called
tracing. Tracing is useful for creating an audit trail of the
transferred data and for debugging and testing methods.
Tracing does not affect the data being transferred.

The configuration tool is used to enable and disable trac-
ing, but it is the data server that generates trace messages
when tracing is enabled.

Data can be traced at a number of different internal loca-
tions within the data server (see Figure 8). Some of the
forms in which trace results can be expressed include:

� Data as received by a data server communication object
from a source software application. This trace data is
expressed using the source software application’s native

data format and includes the source address, the value
received or read, and the time of transfer.

� Data as sent by a data server communication object to
the destination software application. This trace data is
expressed using the destination software application’s
native data format and includes the destination address,
the value sent or written, and the time of transfer.

� Data being mapped by the mapping engine. This trace
data is expressed using the data server mapping engine’s
neutral data format and includes the source address, the
destination address, the value transferred, and the time
of transfer.

Error messages reported by the mapping engine or by
communication objects can also be included in the trace
output. This ability ensures that the relative sequencing of
data transfer messages and error messages is preserved,
which greatly aids the user when trying to troubleshoot
mapping problems.

Server Data Flow

HP Enterprise Link allows the flow of data in the data
server to be interrupted at a number of different internal
points (see Figure 9). This is useful for isolating the
effects of data mappings during debugging and testing.
When an information flow is interrupted, data does
not pass the point of interruption; instead, the data is
discarded.

The flow of information being transferred from a commu-
nication object to a software application can be inter-
rupted. Interrupting the flow here allows the data server

Figure 8

Tracing data that is transferred between applications.

Software
Application

Communication
Object

Mapping
Engine

Software
Application

Communication
Object

Error Trace
Output

SENT Data
Trace Output

RECEIVED Data
Trace Output

SENT Data
Trace Output

RECEIVED Data
Trace Output

Error Trace
Output

Error Trace
Output

MAPPED Data
Trace Output

72 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Figure 9

Interrupt locations in the data server.

Software
Application

Communication
Object

Mapping
Engine

Software
Application

Communication
Object

Receive
Interrupt Flag

Receive
Interrupt Flag

Transmit
Interrupt Flag

Transmit
Interrupt Flag

to read from mapped source addresses, map to new des-
tination addresses, and then discard the data just before
it would have been written to the destination software
application.

The flow of information being transferred from a software
application to a communication object can also be inde-
pendently interrupted. Interrupting the flow here allows
the data server to ignore all data sent to the communica-
tion object by the source software application.

Data Integrity

The HP Enterprise Link data server is carefully designed
to preserve the integrity of the data being mapped and
to map the data exactly once for each trigger event. The
design was influenced by considering how to react to
communication channel failures and data server process
terminations. The circumstances that could cause the
data server process to terminate are the following:

� If a person or software process explicitly kills the data
server process

� If the host machine suffers a hardware or software
failure, loses power, or is manually turned off.

Communication channel failures must be handled care-
fully. If the communication channel connecting a commu-
nication object to its software application fails, the data

being mapped at the time of failure must not be lost or
duplicated. Also, after normal operation of the communi-
cation channel is restored, communication between the
communication object and its application must be auto-
matically established again and all interrupted data trans-
fers restarted.

The following steps are taken to ensure data integrity
when communication channels fail:

� For data received from the source software application,
the communication object never acknowledges receipt
of the data until the data has safely been saved to a
disk-resident receive-spool file.

� Data received by the communication object from the
source software application is not removed from the
receive-spool file until the data has successfully passed
through the mapping engine and been forwarded to the
communication object responsible for sending it to the
destination software application.

� The communication object that sends data to the des-
tination software application only notifies the mapping
engine that it successfully received the data after the
data has been safely saved to a disk-resident transmit-
spool file. Also, it only removes data from the transmit-
spool file when the destination software application has
acknowledged successful receipt of the data.

73 May 1998 • The Hewlett-Packard JournalArticle 9 • 1998 Hewlett Packard Company

Conclusion

The HP Enterprise Link product greatly reduces the cost
and effort required to interconnect business management
systems (such as SAP’s R/3 product) and measurement and
control systems (such as Hewlett-Packard’s RTAP/Plus
product). HP Enterprise Link is an off-the-shelf product
that allows users to connect software applications using
an easy-to-use point and click graphical user interface.

With HP Enterprise Link, companies can minimize the
costs associated with changes made to computer systems
and adapt more quickly to changing market conditions.

Acknowledgments

The author wishes to thank Andrew Ginter and Andy Mah
for their significant contributions to the design and devel-
opment of the HP Enterprise Link product, John Burnell
for his comments during the design of the product, and
Steve Heckbert for his valuable feedback.

HP–UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

http://www.hp.com/hpj/98may/ma98a10.htm
http://www.hp.com/hpj/journal.html
http://www.tmo.hp.com/tmo/pia/Vantera/Index/English/Index.html
http://www.tmo.hp.com/tmo/pia/Vantera/Index/English/Products.html

74 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

Knowledge Harvesting, Articulation, and
Delivery

Harnessing expert knowledge and automating this knowledge to help solve

problems have been the goals of researchers and software practitioners since

the early days of artificial intelligence. A tool is described that offers a

semiautomated way for software support personnel to use the vast knowledge

and experience of experts to provide support to customers.

A consequence of the global shift toward networked desktops is visible

in customer technical support centers. Support personnel are overwhelmed

with telephone calls from customers who are experiencing a steady increase in

the number of problems with intricate software products on various platforms.

Support centers are staffed with less knowledgeable (and less experienced)

first-line agents answering the simple questions and solving common problems.

Expert (and more expensive) technicians resolve more complex problems and

execute troubleshooting procedures. The work of both (the first-line agents

and the technicians) is supported by various technical tools, but they always

have to use their brains and experience to handle effectively the stream of

problems they encounter. This knowledge is seen as the key ingredient for the

efficient functioning of support centers.1

�	�� �� �	���

Kemal Delic is a techni-

cal consultant at HP’s

Software Services Divi-

sion in Grenoble, France. He is responsible

for knowledge technologies. He received a

Dipl.El.Ing. degree from the Faculty of Elec-

trical Engineering at the University of Sara-

jevo in Bosnia. Before joining HP in 1996, he

was a senior scientific consultant with CPR

Consortium in Pisa, Italy. He is married and

has two children. In his free time he enjoys

reading medieval history.

�������	 ��
���

Dominique Lahaix is the

knowledge and elec-

tronic services manager

at HP’s Software Services Division. He came

to HP at the Grenoble Division in 1988. He

received an engineering degree in computer

science in 1985 from the Institut National des

Sciences Appliquées de Lyon. Born in Bur-

gundy, he is married and has three children.

In his spare time he enjoys playing the saxo-

phone, reading philosophy, and outdoor acti-

vities such as skiing, soccer, and running.

�	�� �� �	���

�������	 ��
���

75 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

The number of calls and their complexity have both in-
creased. At the same time, support solution efficiency has
decreased as the cost for providing those solutions has
increased. As a result, there is a need for a knowledge
sharing solution in which the first-line agents will be able
to solve the majority of problems and escalate to the tech-
nicians only the complex problems. To enable such a
solution, we have to:

� Find efficient knowledge extraction methods

� Create compact, efficient knowledge representation
models

� Use extracted knowledge directly in the customer
support operations.

This article describes the HP approach to providing cus-
tomer support in the Windows -Intel business segment.
This segment includes networked desktop environments
known for their high total cost of ownership. Help-desk
services for this segment are supposed to solve the major-
ity of problems with software applications, local area net-
works, and interconnections.

The system described here, called WiseWare,* is a knowl-
edge harvesting and delivery system specifically designed
to provide partially automated help for HP customer sup-
port centers in their problem solving chores.

Partial automation of help-desk support is seen as a suit-
able, cost-effective solution that will:

� Shorten the time spent per call

� Decrease the number of incoming calls (because of
proactive mechanisms)

� Decrease the number of calls forwarded to the next
support level

� Decrease the overall labor costs.

The objective is to reduce dramatically the support costs
per seat per year.

Where Is Knowledge?

To find the most efficient knowledge extraction methods,
we must first answer the question, “Where is the knowl-
edge?” Books, technical articles, journals, technical notes,
reports, and product documentation are all classical
resources that rely on a human being’s ability to extract,

* WiseWare is an internal tool and not an HP product.

evaluate, and apply knowledge. Mechanized efforts still
can’t replace these human attributes.

Current support solutions usually are based on electronic
collections in a free-text format, in which the important
concepts are expressed using natural human language.
The latest release of WiseWare uses technical notes, fre-
quently asked questions, help files, call log extracts, and
user submissions as the primary raw material. According
to the knowledge resource, different knowledge represen-
tations and extraction methods are used.

Extensive research in the field of artificial intelligence has
created several knowledge representation and extraction
paradigms in which the final use for knowledge determines
the characteristics of the representation scheme. The ear-
liest knowledge extraction efforts, known as information

retrieval, initially had small industrial impact. However,
recent interest in the Internet and in electronic book
collections has revived the business interest in information
retrieval. Some of the hottest products on the market today
are search engines. Different search methods (by key-
words or by concepts) are being used and other search
methods (by examples and by natural language phrases)
are being investigated. Recent synergy with artificial intel-
ligence methods has created a promising subfield known
as intelligent information retrieval.2 The majority of today’s
customer support solutions can be classified as enriched
information retrieval systems.

Electronic Document Libraries

Developments in the information retrieval field have trans-
formed free-text collections into more refined collections
known as electronic document libraries. Electronic docu-
ment libraries have an articulated structure (author, sub-
ject, abstract, and keywords), enabling efficient searches
and classification. They combine advanced technological
methods (such as hypertext and multimedia) to fit users’
information retrieval needs. Some of the best support
solutions today are in a digital library class and represent
sophisticated document management systems.

Case-Based Retrieval

Early hardware support documentation contained trouble-
shooting diagrams that made it possible for service tech-
nicians to troubleshoot equipment consistently by follow-
ing the diagrams and performing the appropriate tests and
measurements. The recent revival of these diagrams is

76 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

Glossary

�������� Natural association of similar concepts, words, and
things.

�������� Group of words conveying semantic content. It can be
described graphically as relationships between words having
different attributes (and in some cases as numerical measure-
ments of strength).

���� 	������ Collective name for the field of research dealing
with data analysis in large data depositories. It includes statis-
tics, machine learning, clustering, classification, visualization,
inductive learning, rule discovery, neural networks, Bayesian
statistics, and Bayesian belief networks.

����������� ������ ��� Identification of documents or infor-
mation from the collection that is relevant for the particular
information need.

��"!���� Characteristic word that may enable efficient retrieval
of relevant documents. Two criteria used to assess the value of a
keyword are the number of documents retrieved and the number
of useful documents (recall and precision)

���!������ Group of interrelated concepts used to describe
a certain domain of interest. Complex structures formed by
emulating human behavior in certain activities (for example,
assessment, problem solving, diagnosing, reasoning, and in-
ducing). Different schemes are used to enable knowledge
representation such as rules, conceptual graphs, probability

networks, and decision trees. Knowledge is found in large text
collections and is biologically resident in human brains.

���!����� 	��� Graphical display of interrelated concepts.

���!����� ����� Complex entity typically containing a
database, application programs, search and retrieval engines,
multimedia tools, expert system knowledge, question and
answer systems, decision trees, case databases, probability
models, causal models, and other resources.

	������� Group of measurement methods and techniques in-
troduced to enable quantification of processes, tools, and
products

������ �������� ����������� Activity related to concept
extraction from, formalization of, and methods deployment in
a problem area.

��������� A theoretical framework of a discipline within
which theories, generalizations, and supporting experiments
are formulated.

������� ������� Area of interest defined by terminology,
concepts, and related knowledge.

������ Activity guided by a find and match cycle in which a
search space is usually explored with an appropriate choice of
search words (keywords). Advanced search is done by concepts.

seen in interactive troubleshooting systems that enable PC
hardware technicians to solve hardware problems. So far,
such systems are implemented as case-based retrieval (or
reasoning) systems. The majority of these systems provide
only retrieval; just a few include the reasoning component.
The case-based retrieval paradigm is based on the human
ability to solve problems by remembering previously
solved problems. The support system plays the role of an
electronic case database in which the knowledge consists
of documented experience (cases). Creation and mainte-
nance of the cases is an expensive and nontrivial process.
Currently, these activities are performed by humans and
are used mainly for hardware support. Such systems
cannot deal efficiently with large, complex, and dynamic
problem areas.

Rule-Based Systems

Some support centers have tried to use expert systems
based on rules, but they have discovered that the rule-
based systems are difficult to create, maintain, and
keep consistent. Crafting a collection of rules is a com-
plex chore. It is not clear if this technology will have a
role in future knowledge representation and extraction
development.

Model-Based Systems

A model-based paradigm in which various statistical,
causal, probability, and behavioral models are used is
another example of knowledge representation for cus-
tomer support. The knowledge here is expressed by the
fault/failure model that contains quantified relationships
between causes, symptoms, and consequences. Basic

77 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

decision making is enabled with such models. Although
some limited experiments with this highly sophisticated
knowledge representation paradigm have been done, no
system is in operational use in support centers.

New Research

The newest research in the field of data mining and know-
ledge discovery3 may offer some potentially effective
knowledge representation methods for deployment in
customer support centers. This research aims at the
extraction of previously unknown patterns (insights) from
the existing data repositories. Research in artificial intelli-
gence has identified the initial assembly of a low-cost
knowledge base as a potential “engineering bottleneck.”
The knowledge authoring environment discussion later
in this article addresses that issue. Because most of the
knowledge for WiseWare comes from text sources, we
will focus our attention here on the knowledge extraction
process.

WiseWare and Knowledge Refinement

Knowledge is a fluid, hard-to-define but essential ingre-
dient for all human intellectual activities. It is difficult to
extract, articulate, and deploy. The prevailing quantity of
knowledge is encoded in the form of text (90 percent)
expressed in natural language and is articulated as a web
of interrelated concepts. A goal of research in natural lan-
guage is to enable automatic and semiautomatic extrac-
tion of knowledge. Content analysis must be automated to
efficiently provide suggestions and solutions for users. As
we have already seen, several knowledge representation
paradigms are being invented and investigated (for
example, semantic nets, rules, cases, and decision trees).
Additionally, we can deploy various techniques to extract
concepts (symbolic knowledge) and numerical quantities
(numerical and statistical knowledge).

Refinement Process

Human experts use spreadsheets, outline processors, and
some vendor-specific tools to refine source text, but have
not yet developed systematic, efficient processing methods.
In the future, we would like to automate some phases of
this process, leading toward more efficient and effective
deployment.

Knowledge refinement is seen as a process for converting
raw text into coherent, compact, and effective knowledge
forms suitable for software problem solving and assistance

(for example, decision trees, rules, probability models,
and semantic nets). The basic raw material (the knowledge
in its primary form) remains accessible. This preserves
previous investments in knowledge and enables integra-
tion into future, more sophisticated solutions.

We can describe the knowledge refinement process as
efforts made to transform raw text to a compact represen-
tation and then to operational knowledge. Associated
costs increase as raw text moves through the refinement
process to become operational knowledge.

Currently WiseWare content is partitioned into three con-
ceptual categories: fixes, step notes, and technical notes.
The first two contain shallow, specific knowledge and the
third contains complex technical concepts. A fix is a sim-
ple, short document that describes with fewer than 100
words a known and recurring problem with a known
solution, the fix (see Figure 1a). A fix often helps the
customer out of the immediate problem but does not pro-
vide a long-term solution. It is essentially a “quick fix.”

A step note usually walks the user through a procedure
that prevents the problem from occurring in the future
(see Figure 1b). The step note requires more of the user’s
time to solve the immediate problem than the fix does,
but it saves time in the future.

Both fixes and step notes offer additional references.
Those references contain keywords providing links to
technical notes that explain the most relevant related
subjects in depth. Technical notes require deep technical
knowledge to be properly understood and applied.

The whole collection of fixes, step notes, and technical
notes is tagged to associate the content of each document
with the proper problem classes. Consequently, WiseWare
content is perceived by the user as a repository of advice
and solutions for given problems (quick fixes, step-by-step
procedures, and technical theory).

Some generic activities in the refinement process can be
denoted as:

� Assessment

� Extraction

� Filtering

� Summarization

� Clustering

� Classification.

78 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

Figure 1

Two WiseWare screens: (a) WiseWare fix screen, (b) WiseWare step note screen.

(a)

(b)

79 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

We can describe the evolution of WiseWare as going from
answering questions to giving advice and finally to problem
solving and troubleshooting. The support costs in this
evolution have escalated as the problems have become
more complex.

Knowledge Authoring Environment

Since a critical mass of knowledge can be reached only
if multiple authors contribute to the knowledge base, the
knowledge authoring environment must be able to deal
with multiauthor issues effectively. Additionally, because
the knowledge authoring environment is deployed on a
worldwide basis, the issue of different languages is rele-
vant as well. Finally, deployment in different time zones
requires very high reliability and availability of the knowl-
edge authoring environment.

The quality of the knowledge is constantly monitored and
refined. Areas for improvement are pinpointed by analyz-
ing results reported on the knowledge base logs. As weak
points are identified and strengthened, better system
performance will help to optimize return on investment
figures. Even user satisfaction can be assessed from the
various logs and usage traces that will reflect a combined
measure of system quality and usefulness.

Future worldwide cooperation among support centers
to share knowledge is our objective. Ideally, each center
will deploy and create the necessary knowledge locally.
Centers operate in different time zones, have different
cultural and social contexts, and have the ability to manip-
ulate huge amounts of data, information, and knowledge.
Coordinating the knowledge bases for all support centers
pose several challenging problems. The complexity of
these problems is reduced by careful engineering and
incremental deployment. The result is a low-cost, knowl-
edge-based support, adding new value to the support
business.

In a very advanced situation, and from a long-term per-
spective, extracted knowledge will become the crucial
ingredient for the next development phase. In this phase,
human mediation in problem solving could be removed.
Support could be delivered electronically without human
intervention. For example, imagine intelligent agents trav-
eling over the network to the troubled system to fix
a problem.4 Current viruses on the Internet are doing
exactly the opposite task. What if the trend were reversed?
Support knowledge could be adapted so that healing

viruses could travel through a system, delivering remote
fixes. To understand how this could become a reality, let’s
review the history of WiseWare.

WiseWare Architecture

In November of 1995, the first challenge was posed to the
WiseWare team when the French call center decided to
outsource low-end software support services. Their sup-
port personnel were without computer technology back-
ground and demonstrated poor English language skills.
The knowledge department in HP’s Software Services
Division in Europe responded to the challenge and deliv-
ered the first operational WiseWare solution in April of
1996. Since then, new releases are issued every two
months with steady improvements.

In the WiseWare release 4.1, mirroring intranet servers
(Europe and the United States) cover three super regions.
The number and quality of accessible documents is
constantly improved, while use of the system is closely
monitored from access and search logs. We have estab-
lished close links with software vendors who allow us
privileged access to their documents. (The legal frame-
work for cooperation and alliances is defined as well.) All
activities and services undergo quality assurance scrutiny
in preparation for ISO-9000 certification.

WiseWare provides approximately 80,000 documents to 13
call centers worldwide. The average problem resolution
assistance rate is over 30 percent. More than 40 products
are covered in the various types of documents offering
quick fixes for agents and in-depth technical knowledge
for advanced WiseWare users.

WiseWare is a distributed system with three major parts:
production, publishing, and monitoring (see Figure 2).
They are implemented on UNIX and Windows NT plat-
forms, with intranet technology providing the necessary
glue for client/server solutions. It is a nonstop, highly
available system. The key advantage of the WiseWare
system lies in the tight loop between the monitoring and
production areas in which the principal objective is to
provide users with highly adaptable documents for every-
day problem-solving chores. Data mining and natural
language processing modules dynamically create user,
problem, and document profiles that will then drive the
production side, enabling technical and business insights

80 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

Figure 2

WiseWare system architecture.

HP 9000/829 K
Search and

Access Mine

Co
nt

en
t M

an
ag

em
en

t

Monitoring

HP-UX 10.20

File System

Access and Reporting

SQL Server 6.5

Windows NT 4.0

HP-NetServer LD
Pro 6/180

Web Clients

Web Servers

Content

DM-Lib NLP-LibD
ev

el
op

m
en

t

W
eb

 P
ub

lic
at

io
n

Co
nt

ro
l

Production

Publishing

DM-Lib
NLP-Lib

Data Mining Library
Natural Language Processing Library

to be gleaned from large and extensive access and search
logs.

At this time, customers call the express hubs and explain
their problems to support personnel, using natural lan-
guage constructs that sometimes blur the real nature of
the problem. According to their understanding, support
personnel create and launch a search phrase. It is a
Boolean construct containing relevant keywords or free-
text phrases that roughly represent the problem. Different
search, hit, and presentation strategies are currently used,
but formation of the effective search query and reduction
of the number of relevant replies are largely still unre-
solved. A mixture of artificial intelligence techniques and
traditional information retrieval and database methods is
being offered as potential solutions.

Table I shows how one, two, and three words in a typical
search phrase can influence the number of relevant docu-
ments returned with current version of WiseWare. A well-
formed phrase helps to quickly pinpoint relevant docu-
ments while retaining necessary coverage of the problem
area. Notice the quick decrease in the number of relevant
documents returned as the phrase becomes longer.

Support center personnel work under time-pressured,
stressful circumstances. As a result, the whole human-

computer interaction issue must be carefully considered.
Efficiently delivering advice and problem-solving assis-
tance can depend on the smallest detail. Besides the
quality of the material in the supporting knowledge base,
questions regarding query formulation and presentation of
the retrieved information will influence final acceptance
from the users. Support activities can be treated as sym-
biotic human-machine problem solving in a bidirectional
learning paradigm. The user learns how to manipulate the
system (facilitated by language features such as localiza-
tion and query wizards). At the same time, the system
adapts to the user’s methods of accessing the knowledge
base. The WiseWare system learns user behavior from
access and language patterns. Interaction with the system
customizes the environment to suit the specific user’s
profile. The reasoning activity is still done by humans and
is supported by refined electronic collections. Good syn-
ergy and efficient functioning of such human-computer
systems are the current objectives.

Because the support centers are located in different geo-
graphical, cultural, and language areas, the natural lan-
guage layer is seen as crucial for search and presentation.

81 May 1998 • The Hewlett-Packard JournalArticle 10 • 1998 Hewlett Packard Company

Table I
Search phrases and number of documents returned

Search Phrases/Documents Returned

Application/Documents Change Change+User
Change+User+

Password Create Create+New
Create+New+

Message

WinNT/6046 1371 9 3 – – –

Win3.x/4397 1224 1 0 – – –

CC:Mail/2600 – – – 727 12 2

MS:Mail/3963 – – – 878 21 2

Technological advances in visual search and delivery
combined with audio and video techniques may improve
the quality and efficiency of the system. Better architec-
ture combined with object-oriented (multimedia) data-
bases will add another dimension to the delivery phase.
These improvements will be made over time and will be
accelerated by technological developments in related
fields.

Conclusion

Accessible knowledge is the essential ingredient for suc-
cessfully dealing with the rising quantity and complexity
of customer support calls. A semiautomated system with
refined knowledge in reusable forms can enable users to
share knowledge among different, geographically dis-
persed customer support centers. The overall objective
of HP’s WiseWare server is to provide low-cost, effective
customer support. This is a simple objective but one that
is difficult to achieve, especially when significant effort
and investment are required to achieve technological
breakthroughs in the problem-solving field.5

In the short term, incremental deployment of advanced
methods such as data mining and natural language pro-
cessing techniques will improve system quality and usage.
In the long run, it is very likely that most of the client-hub
telephone voice communication will be gradually replaced

by computer-computer communication. Several layers of
the present problem- solving architecture will disappear
or will be replaced by some new elements. The problem-
solving knowledge along with search and access log
collections being developed now will serve as the funda-
mental basis for future electronic support.

Acknowledgments

We would like to thank Markus Baer, Markus Brandes,
and Jean-Claude Foray from HP’s support labs for their
role in WiseWare development. Its development would
not have been possible without the understanding and
support of Jim Schrempp and Alain Moreau. Finally,
special thanks to all WiseWare team members.

References

1. http://www.HelpDeskInst.com/

2. http://ciir.cs.umass.edu/

3. http://www.kdnuggets.com/

4. http://retriever.cs.umbc.edu/agents/

5. http://www.gartner.com/

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Windows is a U.S. registered trademark of Microsoft Corporation.

http://www.HelpDeskInst.com/
http://ciir.cs.umass.edu/
http://www.kdnuggets.com/
http://www.gartner.com/
http://www.hp.com/hpj/98may/ma98a11.htm
http://www.hp.com/hpj/journal.html

82 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

A Theoretical Derivation of Relationships
between Forecast Errors

This paper studies errors in forecasting the demand for a component used by

several products. Because data for the component demand (both actual demand

and forecast demand) at the aggregate product level is easier to obtain than at

the individual product level, the study focuses on the theoretical relationships

between forecast errors at these two levels.

With a sound theoretical foundation for understanding forecast errors, a

much more confident job can be done in forecasting and in related planning

work, even under uncertain business conditions.1

In a typical material planning process, planners are constantly challenged by

forecast inaccuracies or errors. For example, should a component forecast

error be measured for each platform for which it may be needed, or should its

forecast accuracy be measured at the aggregate level, across platforms? What

is the relation between the two accuracy measures?

This paper describes a theoretical study of forecast errors. First, we formally

define forecast errors with different rationales, derive several relationships

among them, and prove a heuristic formula proposed by Mark Sower.1 Then

we study the effects of a systematic bias on the forecast errors. Finally, we

extend our study to the situations where correlations across product demands

and time effects in demand and forecast are taken into account. Definitions

and theorems are presented first, and proofs of the theorems are given at the

end of the paper.

Basic Concepts

Consider the case of a component that can be used for the manufacture of n

different products, or platforms. For platform i (1�i�n), denote by Fi the

forecast demand for the component, and by Di the actual demand. In the

treatment of forecast and actual, we propose in this paper the following

��

� �� ���	

��

� �� ���	

Jerry Shan is a software

engineer at HP Laborato-

ries, responsible for sta-

tistical analysis and experimental design for

applications of HP Laboratories’ Enterprise

Modeling and Simulation system. He received

his PhD degree in statistics from Stanford

University and joined HP in 1994. Born in

China’s Jiangsu province, he taught statistics

at China Textile University before coming to

the Unites States. He is married, has two chil-

dren, and enjoys soccer, photography, and

swimming.

83 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

framework: Regard forecast demand as deterministic, or

predetermined, and actual demand as stochastic. By
stochastic, we mean that given the same operating envi-
ronment or experimental conditions, the actual demand
can be different from one operation run to another. Thus,
we can postulate a probability distribution for it.

For a generic case, denote by D the actual demand and by
F the forecast. We call the forecast unbiased if E(D)�F,
where E(D) denotes the expectation, or expected value,
of D with respect to its probability distribution. Practically
speaking, this unbiased requirement means that over many
runs under the same operating conditions, the average of
the realized demand is the same as the forecast. If there is
a deterministic quantity b�0 such that E(D)�F�b, then
we say the forecast is biased, and the bias is b. In prac-
tice, this means that there is a systematic departure of the
average realized demand from the forecast.

Throughout the paper, we often make the normality as-
sumption on the demand, that is, for unbiased forecasts,
we assume that the demand D has a normal (Gaussian)
distribution with mean F and standard deviation �, that is,
D�N(F, �2). Is this a reasonable assumption in reality?
The answer is yes. First of all, this assumption is techni-
cally equivalent to assuming that the difference ��D�F
between the actual demand D and the forecast F is nor-
mally distributed: ��N(0, �2). The validity of this latter
assumption is based on the fact that the difference be-
tween the actual demand and a good forecast is some ag-
gregation of many small random errors, and on the central
limit theorem, which states that the aggregation of many
small random errors has a limiting normal distribution.

Unbiased Forecast Case

In this section, we assume unbiased forecasting at all
platforms.1 Statistically, E(Di)�Fi, where Fi is the fore-
cast for the common component at platform i, and Di is
the actual demand of the component at platform i.

Definition 1: (Same Weight Mean Based) Define E��E(��)
to be the forecast error at the mean (average) platform
level, and Ea�E(�a) to be the forecast error at the aggre-
gate platform level, where:

�� �
1
n�

n

i�1

�Di � Fi
�

Fi
, (1a)

and

�a �

��

n

i�1

Di ��

n

i�1

Fi�

�

n

i�1

Fi

. (1b)

The rationale of defining the forecast error at the
mean level and at the aggregate level is as follows. Let
�i�|Di�Fi|/Fi. Then �i measures, in terms of the relative
difference, the forecast error at a single platform i.
Accordingly, �a measures the forecast error, also in terms
of the relative difference, at the aggregate level from all
platforms, and �� provides an estimate for the forecast
error at any individual platform since it is the average of
the forecast errors over all individual platforms. Because
all the quantities in equation 1 are stochastic, we take
expectations to get their deterministic means. Now, a
natural question is: What is the relation between the
errors at the two different levels?

Theorem 1: Based on definition 1, and assuming that
Di�N(Fi, �2), i�1, 2, ..., n, and that the Di are uncorre-
lated (strictly speaking, we also need the joint normality
assumption, which in general can be satisfied), we have:

1. E�� n
 EaCn, where:

Cn � �
1
n�

n

i�1

1
Fi
	�

1
n�

n

i�1

Fi	. (2)

2. It is always true that Cn�1, and Cn�1 if and only if the
forecasts across all the platforms are the same.

We note that in the definition for ��, we used the same
weight, 1/n, for all platforms. If instead we use a weight
proportional to the forecast at the platform, then we have
the following:

Definition 2: (Weighted Mean Based) Define E��E(��)
and Ea�E(�a), where:

�� �
�

n

i�1

Fi

�

n

j�1

Fj

�Di � Fi
�

Fi
�

�

n

i�1

�Di � Fi
�

�

n

i�1

Fi

(3a)

and

84 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

�a �

��

n

i�1

Di ��

n

i�1

Fi�

�

n

i�1

Fi

. (3b)

Theorem 2: Based on definition 2 and with the same
assumptions as in theorem 1, we have:

E� � n
 Ea. (4)

Mark Sower1 proposed this heuristic formula. Theorem 2
says that under suitable conditions, equation 4 holds
exactly.

Other researchers have addressed a similar problem from
the perspective of demand variability. In measuring the
relative errors of the forecast at the individual platforms,
it was assumed that �i/�i (i�1, 2, ..., n) are the same,
where �i is a measure of demand variability and �i is the
mean demand at platform i. The advantage here is we do
not need to make such a strong assumption. In fact, our
measure of the forecast error at the individual platform
level can be interpreted as the forecast error at an aver-
aged individual platform.

The following definition of error is based on this observa-
tion in practice. The standard deviation of a random vari-
able can be very large if the values this random variable
takes on are very large. A more sensible error measure of
such a random variable would be the relative error rather
than the absolute error. So, given a random variable X,
we can measure its error by the coefficient of variance
cv(X)��(X)/E(X) rather than by its standard deviation
�(X).

With the unbiased forecast assumption, the forecast error
at platform i can be measured by cv(Di). The average of
these coefficients over all platforms is a good measure of
the forecast error at the individual platform level. On the

other hand,�
n

i�1

Di is the demand from all platforms, and

�

n

i�1

Fi is the corresponding forecast, so cv��
n

i�1

Di	 is a

good measure of the forecast error at the aggregated plat-
form level.

Definition 3: (CV Based) Define:

E� �
�

n

i�1

cv(Di)�n and Ea � cv��
n

i�1

Di	.

Theorem 3: Based on definition 3, and assuming that the
Di are uncorrelated, we have

E� � n
 EaCn, (5)

where Cn is defined in equation 2. For theorem 3, we do
not have to assume normality to get the relevant results.
This is also true for theorem 4.

General Case: The Effect of Bias

We assume here that forecasts are consistently biased.
This is expressed as E(Di)�Fi�b, where b denotes the
common forecast bias. This indicates that Fi overesti-
mates demand when b�0 and underestimates demand
when b�0.

Can we extend the use of definition 3 for the forecast
errors to this general case? The answer is no. This is be-
cause the standard deviation is independent of bias, and
therefore one could erroneously conclude that the fore-
cast error is small when the standard deviation is small,
even though the bias b is very significant. Instead, the
forecast error now should be measured by the functional:

e(D, F) � E([D � F]2)

�F, (6)

rather than by the cv, which is E([D�E(D)]2)

�E(D).

Hence, in parallel with definition 3, we have the following
definition.

Definition 4: (e-Functional Based) Define:

Ec � e��
n

i�1

Di,�
n

i�1

Fi	 and E� �
�

n

i�1

e(Di, Fi)�n,

where the functional e is defined in equation 6.

If the bias b�0, then the functional e in equation 6 is
the same as the cv, and hence definitions 3 and 4 are
equivalent.

85 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

Theorem 4: Based on definition 4, and assuming that
Di�(Fi�b, �2),* i�1, 2, ..., n and that the Di are uncor-
related, we then have:

E� � n
 EaCn
�

2
� b2

�
2
� nb2

,
 (7)

where Cn is given in equation 2.

Since definition 1 considers the relative difference be-
tween the forecast and the actual, any bias in the forecast
will be retained in the difference, so there is no problem
in using this definition even if there is bias. However, the
relation between the two errors has changed.

Theorem 5: Based on definition 1 and the assumption that
Di � N(Fi�b, �2), i�1, 2, ..., n and that the Di are uncor-
related, we have:

E� � n
 EaCn

2
�

�e�b2

	2�2
� b[2�(b	�) � 1]

2
�

�e�b2

	2�2
� n
 b[2�(n
 b	�) � 1]

, (8)

where Cn is defined in equation 2, and �(x) is the cumula-
tive distribution function of the standard normal distribu-
tion N(0, 1) at x.

If there is no bias in the forecasting, the relationships be-
tween the errors at the two levels are exactly the same for

definitions 1 and 3: E� � n
 EaCn. This formula, with the
introduction of the constant Cn, is slightly different from
the hypothesized equation 4. As noted in theorem 1, it is
always true that Cn�1. If we use definition 2, then equa-
tion 4 holds exactly.

If there is bias in the forecasting, then in each relationship
formula (equation 7 or equation 8), there is another multi-
plying factor that reflects the effect of the bias. One can
easily find that both of these multiplying factors are less
than or equal to 1. This implies that, compared to the
error at the component level, the error at the platform-
component level when forecast bias exists is less than
when the forecast bias does not exist.

If bias does exist, as it does in reality, it seems that the
multiplying factor resulting from bias in either equation 7
or equation 8 should be taken into consideration, with
suitable estimation of the parameters involved.

* The notation X�(�, �2) means that X has mean � and standard deviation � but is not
necessarily normally distributed.

Correlated Demands

It is reasonable to assume that demand for a component
for one platform affects demand for this component for
another platform. Also, for a given platform, there is usu-
ally a strong correlation between the current demand and
the historical demands. The forecast is usually made
based on the historical demands. In this section, we first
propose a correlated multivariate normal distribution
model for the demand stream when the platform is
indexed, and then propose a time-series model for the
demand and forecast streams when time is indexed. Our
goal is to expand our study of the relationship between
the two layers of forecast errors in the presence of cor-
relations. Throughout this section, we assume unbiased
forecasts, and use the weighted average definition (defini-
tion 3) for the forecast error.

Correlated Normal Distribution Model at a Time Point. In
this subsection we consider the case where there is cor-
relation across platform demands, but we still assume
that time does not affect demand. Suppose that the de-
mand stream Di, i�1, 2, ..., n can be modeled by a corre-
lated normal distribution such that Di�N(Fi, �2) for i�1,
2, ..., n and that there is a correlation between different Di

expressed as Cov(Di, Dj) ��
2ρij for 1�i�j�n. With this

assumption on the demand stream, we have the following
result.

Theorem 6: Based on definition 2 and the above corre-
lated normal distribution modeling for the demand
stream, we have:

E� �
n

�

1�i�j�n

�ij � n

Ea. (9)

In particular, if ρij�ρ for all 1�i�j�n, then we get:

E� �

n

(n � 1)�� 1

Ea. (10)

When the common correlation coefficient ρ is 0 or near 0,
we see that equation 4 holds exactly or approximately.

Autoregressive Time Series Model. Now we take into
consideration the time effect in the product demand. For

platform i, i�1, 2, ..., n at time t, t�1, 2, ..., denote by D(t)
i

86 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

the demand and F(t)
i the forecast. Suppose that the de-

mand stream over time at each platform can be modeled
by an autoregressive model AR(p). At platform i, the auto-
regressive model assumes that the demand at the current
time t is a linear function of the past demands plus a ran-
dom disturbance, that is:

D(t)
i ��

p

j�1

ai,jD
(t�j)
i � �

(t)
i ,

where the ai,j are constant coefficients. Further, suppose

that the forecast F(t)
i is optimal given the historical de-

mand profile �(t�1)
i � ��D(1)

i , D(2)
i , ..., D(t�1)

i
. That is,

with D(0)
i , D(�1)

i , ..., D(�(p�1))
i properly initialized, for

t�1:

D(t)
i � ai,1D(t�1)

i � ai,2D(t�2)
i ����� ai,pD(t�p)

i � �
(t)
i ,

and

F(t)
i � E�D(t)

i
��

(t�1)
i

� ai,1D(t�1)
i � ai,2D(t�2)

i ����� ai,pD(t�p)
i ,

where �(1)
i , �

(2)
i , ..., �

(t)
i , ... are independently and iden-

tically distributed as N(0, �2) and the random disturbance

at time t, that is, �(t)
i , is independent of the demand stream

before time t, that is, {D(t�1)
i , D(t�2)

i , ...}. Also, we

assume independence across platforms. With the above
modeling of the demand and forecast, what can we say
about the relationship between the two layers of forecast
errors?

Theorem 7: Based on definition 1 or 2 and the above time-
series modeling for the demand stream and forecast
stream, and assuming that the variances at all platforms
are the same, then at any time point, if definition 1 is
used:

E(t)
�

� n� E(t)
a C

~
n, (11)

where

C
~

n �

E�1
n�

n

i�1

1
F(t)

i

E�
�

�

�

n

�

n

i�1

F(t)
i
�
�

�

�

.

and if definition 2 is used, then:

E(t)
�

� n� E(t)
a . (12)

Rewriting Cn in equation 2 as

Cn �

1
n�

n

i�1

1
F(t)

i

n

�

n

i�1

F(t)
i

and taking expectations for the numerator and denomina-

tor separately in the expression leads to C
~

n. Hence, it is

always true that C
~

n�1.

Proofs

Theorem 1 is a special case of theorem 5. Theorem 3 is a
special case of theorem 4. The proof for theorem 6 is simi-
lar to that for theorem 5, with an application of lemma 1.

Lemma 1: If X�N(b, �2), then:

E|X| � 2
�

� �e�b2
	2�2

� b[2�(b	�) � 1] � H(b, �). (13)

Proof of Lemma 1: Without loss of generality, we can
assume that ��1, since otherwise we can make a simple
transformation Y = X/�.

E|X| � 1
2��

�

��

|x|e�(x�b)2
	2dx

�

1
2��

�

0

|x|e�(x�b)2
	2dx �

1
2��

�

0

|y|e�(y�b)2
	2dy

87 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

� I(b) � I(� b), where

I(b) � 1
2��

�

�

0

xe�(x�b)2

2dx

�

1
2��

�

�

�b

(y � b)e�y2

2dy

�

1
2��

e�b2

2

� b�(b), and hence

E|X| � 2
2��

e�b2

2

� b�(b) � (� b)�(� b)

�

2
�

� e�b2

2

� b[2�(b) � 1].

Proof of Theorem 1 Parts 2 and 3. First note that func-
tion ϕ(x)�1/x is convex over (0, �). Let random variable
X have a uniform distribution on the set {Fi: 1�i�n}, that
is, P(X�Fi) �1/n. An application of the Jensen inequality2

Eϕ(X)	ϕ(EX) leads to the desired inequality. The second
part is based on the condition for the Jensen inequality to
become an equality.

Proof of Theorem 4:

e(Di, Fi) �
E([Di � Fi]2)�

Fi
�

�
2
� b2�

Fi
,

E� �
1
n�

n

i�1

e(Di, Fi) �
1
n�

n

i�1

�
2
� b2�

Fi
,

Ea � e�
n

i�1

Di,�
n

i�1

Fi� �

n�2
� (nb)2�

�

n

i�1

Fi

.

Hence we have:

E�

Ea
� n� �

2
� b2

�
2
� nb2

� Cn.

Proof of Theorem 5: Noting that:

Di � Fi � N(b, �
2) and �

n

i�1

(Di � Fi) � N(nb, n�2),

then we have:

E�

Ea
�

E(e�)
E(ea)

�

1
n�

n

i�1

1
Fi

1

�

n

i�1

Fi

H(b, �)

H(nb, n� �)
(by lemma 1)

� n� Cn

2
�

�
�e�b2

2�2
� b[2�(b
�) � 1]

2
�

�
�e�b2

2�2
� n� b[2�(n� b
�) � 1]

.

Proof of Theorem 7: The proofs for equations 11 and 12
are similar. We give a proof for equation 11 only. First

notice that D(t)
i �F(t)

i ��
(t)
i �N(0, �i

2
�. At any given

time t, by the definitions for E(t)
�

 and E(t)
a , we have:

E(t)
�

�

1
n�

n

i�1

E
��

(t)
i
�

F(t)
i

�

�

1
n�

n

i�1

E��(t)
i
��E 1

F(t)
i

�

�

1
n�

n

i�1

2
�

� �E 1
F(t)

i

�.

This second step follows from the fact that �(t)
i is inde-

pendent of demands before time t, and hence independent

of the optimal forecast at time t, F(t)
i . The last step follows

from lemma 1 and the same variance assumption across
platforms.

E(t)
a � E�

�

�

�

��

n

i�1

�
(t)
i �

�

n

i�1

F(t)
i

�

�

�

�

� E��
n

i�1

�
(t)
i ��E�

�

�

�

1

�

n

i�1

F(t)
i
�

�

�

�

88 May 1998 • The Hewlett-Packard JournalArticle 11 • 1998 Hewlett Packard Company

�

2
�
�

n

i�1

�
2
i� E�
�

�

�

1

�

n

i�1

F(t)
i
�

�

�

�

� n� �
2
�

� �E�
�

�

�

1

�

n

i�1

F(t)
i
�

�

�

�

.

The reasoning is the same as for proving E(t)
�

 above.

Conclusion

Forecast errors increase the complexity and difficulty of
the production planning process. This results in excessive
inventory costs and reduces on-time delivery. In this paper
we have studied the forecast errors for the case of several
products using the same component. Because data for the
component demand (both actual demand and forecast
demand) is easier to obtain at the aggregate product level
than at the individual product level, we focused on the
theoretical relationships between forecast errors at these
two levels.

Our first task was to propose formal definitions for mea-
suring forecast errors under different rationales and tech-
nical assumptions. The second task was to formally derive

relationships between forecast errors at the two levels. As
part of our work we proved the validity of a heuristic for-
mula proposed by Mark Sower of the business operations
planning department at the HP Roseville, California site.

In addition to analyzing the two-level problem, we derived
a theoretical basis for relaxing the usual assumptions con-
cerning correlations in the data across products and over
time.

Acknowledgments

I offer my first thanks to Pano Santos for introducing me
to a related material planning problem, and to Mark Sower
for his marvelous intuition. Special thanks go to Farid
Aitsahlia for his careful technical reading and editorial
assistance. Thanks also go to Shahid Mujtaba, Alex Zhang
(University of Southern California), and Dirk Beyer for
their valuable comments and suggestions, and to Bob
Ritter, Shailendra Jain, and Paul Williams for their man-
agement support and encouragement. In particular, Paul
Williams helped greatly in writing the conclusion.

References

1. P. Santos, J. Shan, M. Sower, and A. Zhang, Material Planning

in Configure-To-Order Environment with Product Demand

Uncertainty and Component Shortage Conditions, HP Labora-
tories Technical Report HPL-97-32, 1997 (HP Internal Only).

2. E.B. Manoukian, Modern Concepts and Theorems of Mathe-

matical Statistics, 1986.

http://www.hp.com/hpj/98may/ma98a12.htm
http://www.hp.com/hpj/journal.html

89 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Strengthening Software Quality Assurance

Increasing time-to-market pressures in recent years have resulted in a

deterioration of the quality of software entering the system test phase. At

HP’s Kobe Instrument Division, the software quality assurance process was

reengineered to ensure that released software is as defect-free as possible.

The Hewlett-Packard Kobe Instrument Division (KID) develops

measurement instruments. Our main products are LCR meters and network,

spectrum, and impedance analyzers. Most of our software is built into these

instruments as firmware. Our usual development language is C. Figure 1

shows our typical development process.

Given adequate development time, we are able to include sufficient software

quality assurance activities (such as unit test, system test, and so on) to provide

high-quality software to the marketplace. However, several years ago, time-to-

market pressure began to increase and is now very strong. There is no longer

enough development time for our conventional process. In this article, we

describe our perceived problems, analyze the causes, describe countermeasures

that we have adopted, and present the results of our changes.

Figure 1

Design
Implement

(Coding) Test Ship

ERS/IRS
Unit
Test

Integration
Test

System
Test

Final Audit

R&D R&D, SWQA,
Marketing

R&D

R&D

ERS/IRS
SWQA

External/Internal Reference Specification
Software Quality Assurance
SWQA Checkpoint

Hewlett-Packard Kobe Instrument Division software development process
before improvement.

�����	
� �����

��� ���� ���

�����	
� �����

Mutsuhiko Asada is a

software quality assur-

ance engineer at HP’s

Kobe Instrument Division. He received a

Master’s degree in nuclear engineering from

Tohoku University in 1986 and joined HP the

same year. Born in Japan’s Miyagi prefec-

ture, he is married, has two children, and

enjoys mountain climbing and photography.

��� ���� ���

Bryan Pong is an R&D

engineer with HP’s Kobe

Instrument Division,

working mainly on firmware. He received

Master’s degrees in electronics and computer

engineering from Yokohama National Univer-

sity in 1996. He was born in Hong Kong and

likes travel and swimming.

90 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Existing Development Process

The software development process that we have had in
place since 1986 includes the following elements:

� Improvement in the design phase. We use structured
design methods such as modular decomposition, we use
defined coding conventions, and we perform design
reviews for each software module.

� Product series strategy. The concept of the product
series is shown in Figure 2. First, we develop a plat-
form product that consists of newly developed digital
hardware and software. We prudently design the plat-
form to facilitate efficient development of the next and
succeeding products. We then develop extension prod-
ucts that reuse the digital hardware and software of the
platform product. Increasing the reuse rate of the soft-
ware in this way contributes to high software quality.

� Monitoring the defect curve. The defect curve is a plot
of the cumulative number of defects versus testing time
(Figure 3). We monitor this curve from the beginning
of system test and make the decision to exit from
the system test phase when the curve shows sufficient
convergence.

As a result of the above activities, our products’ defect
density (the number of defects within one year after ship-
ment per thousand noncomment source statements) had
been decreasing. In one product, less than five defects
were discovered in customer use.

Perceived Problems

Strong time-to-market pressure, mainly from consumers
and competitors, has made our development period and
the interval between projects shorter. As a result, we
have recognized two significant problems in our products

Figure 2

New

Reuse

ModifyNew

New

Reuse

Modify

Platform Product Extension Product Extension Product

Product A Product A Product A

The product series concept increases the software reuse
rate, thereby increasing software quality.

Figure 3

0
Test Hours

250

300

350

200

150

100

50

0
100 200 300 400 500 600 700 800 900 1000 1100

N
um

be
r o

f D
ef

ec
ts

Project X (1993 Shipment)

Project B (1990 Shipment)

Typical defect curves.

and process: a deterioration of software quality and an
increase in maintenance and enhancement costs.

Deterioration of Software Quality. In recent years (1995
to 1997), software quality has apparently been deteriorat-
ing before the system test phase. In our analysis, this phe-
nomenon is caused by a decrease in the coverage of unit
and integration testing. In previous years, R&D engineers
independently executed unit and integration testing of the
functions that they implemented before the system test
phase. At present, those tests are not executed sufficient-
ly because of the shortness of the implementation phase
under high time-to-market pressure. Because of the
decrease in test coverage, many single-function defects
(defects within the range of a function, as opposed to
combination-function defects) remain in the software at
the start of system test (Figure 4). Also, our system test
periods are no longer as long. We nearly exhaust our test-
ing time to detect single-function defects in shallow soft-
ware areas, and we often don’t reach the combination-
function defects deep within the software. This makes
it less likely that we will get convergence of the defect
curve in the limited system test phase (Figure 5).

Increase of Maintenance and Enhancement Costs.

For our measurement instruments, we need to enhance
the functionality continuously to satisfy customers’ re-
quirements even after shipment. In recent products,
the enhancement and maintenance cost is increasing
(Figure 6). This cost consists of work for the addition of

91 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 4

Combination-Function
Defects and Others

82.2%

Combination-
Function

Defects and
Others
52.0%

Single-
Function
Defects
48.0%

Product B (1990) Product D (1996)

Single-
Function
Defects
17.8%

Change in the proportion of single-function defects found
in the system test phase.

new functions, the testing of new modified functions, and
so on. In our analysis, this phenomenon occurs for the
following reasons. First, we often begin to implement
functions when the detailed specifications are still vague
and the relationships of functions are still not clear.
Second, specifications can change to satisfy customer
needs even in the implementation phase. Thus, we may
have to implement functions that are only slightly different
from already existing functions, thereby increasing the
number of functions and pushing the cost up. Figure 7

shows that the number of functions increases from one

Figure 5

Project D (1996 Shipment)

Project C
(1995 Shipment)

350

0

Test Hours

300

250

200

150

100

50

0
100 200 300 400 500 600

N
um

be
r o

f D
ef

ec
ts

Defect curves for post-1995 products.

Figure 6

160

140

120

100

80

60

40

20

0

Product B (1991)
Total: 24 Functions

Enhanced

Product C (1995)
Total: 13 Functions

Enhanced
61.3

132

Ti
m

e
(H

ou
rs

/F
un

ct
io

n)

Increase in the cost per function of enhancement and
maintenance. The first enhancements for Product B
occurred in 1991.

product to another even though the two products are
almost the same.

Often the internal software structure is not suitable for a
particular enhancement. This can result from vague func-
tion definition in the design phase, which can make the
software structure inconsistent and not strictly defined.
In the case of our combination network and spectrum
analyzers, we didn’t always examine all the relationships
among analyzer modes and the measurement and analyzer
functions (e.g., different display formats for network and
spectrum measurement modes).

Figure 7

Product B (1990)
Product C (1995)

320

395

500

400

300

200

100

0

N
um

be
r o

f C
om

m
an

ds

Increase in the number of commands in two similar
analyzers as a result of changing customer needs.

92 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Naturally, the enhancement process intensely disturbs soft-
ware internal structures, which forces us to go through
the same processes repeatedly and detect and fix many
additional side-effect defects.

Countermeasures1,2

If we had enough development time, our problems would
be solved. However, long development periods are no
longer possible in our competitive marketplace. Therefore,
we have improved the development process upstream to
handle these problems. We have set up two new check-
points in the development process schedule to make sure
that improvement is steady (Figure 8). In this section we
describe the improvements.

We plan to apply these improvement activities in actual
projects over a three-year span. The software quality
assurance department (SWQA) will appropriately revise
this plan and improve it based on experience with actual
projects.

Design Phase—Improvement of Function Definition. We
have improved function definition to ensure sufficient
investigation of functions and sufficient testing to remove
single-function defects early in the development phase.

Figure 8

Design
Implement

(Coding) Test Ship

ERS Function
Definition

(IRS)

Automatic
Unit and

Integration
Test

Writing
Test Script for

Automatic
Test

System
Test

R&D R&D, SWQA,
Marketing

SWQA, R&D

SWQA, R&D

Flow of Information

321

1

2

3 Final Audit

SWQA Checkpoint

Checking Content of Function Definition

Checking Test Scripts and Testing Results

Improved software development process.

We concisely describe each function’s effects, range of
parameters, minimum argument resolution, related func-
tions, and so on in the function definition (Figure 9).
Using this function definition, we can prevent duplicate
or similar functions and design the relationships of the
measurement modes and functions precisely. In addition,
we can clearly define functions corresponding to the
product specifications and clearly check the subordinate
functions, so that we can design a simple and consistent
internal software structure. We can also easily write the
test scripts for the automatic tests, since all of the neces-
sary information is in the function definitions.

SWQA, not R&D, has ownership of the template for func-
tion definition. SWQA manages and standardizes this
template to prevent quality deterioration and ensure that
improvements that have good effects are carried on to
future projects.

Checkpoint at the End of the Design Phase. The first
new checkpoint in the development process is at the end
of the design phase. SWQA confirms that all necessary
information is contained in the function definitions. SWQA
approves the function definitions before the project goes
on to the implementation phase.

Implementation Phase—Automatic Test Execution. In
this phase, SWQA mainly writes test scripts based on the
function definitions for automatic tests to detect single-
function defects. We use equivalence partitioning and
boundary value analysis to design test scripts. As for
combination-function defects, since the number of combi-
nations is almost infinite, we write test scripts based only
on the content of the function definitions. When we im-
plement the functions, we immediately execute the auto-
matic tests by using the scripts corresponding to these
functions. Thus, we confirm the quality of the software as
soon as possible. For functions already tested, we re-
execute the automatic tests periodically and check for
side effects caused by new function implementations. As
a result of these improvements, we obtain software with
no single-function defects before the system test phase,
thereby keeping the software quality high in spite of the
short development period. The test scripts are also used
in regression testing after shipment to confirm the quality
of modified software in the enhancement process. In this
way, we can reduce maintenance and enhancement costs.

93 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 9

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

Swp

POIN <val>

SPAN <val> (Hz)

STAR <val> (Hz)

STOP <val> (Hz)

SPAN <val>
(Hz/dBm)

STAR <val>
(Hz/dBm)

STOP <val>
(Hz/dBm)

SWET <val> (s)

SWETAUTO <bool>

SWPT <enum>

SWPT <enum>

2 to 801 (int type)

0 to 510 M(Hz)

0 to Max Val (Hz)

Min Val to 510 M(Hz)

0 to 510 M(Hz),
0 to 20 (dBm)

0 to 510 M(Hz),
50 to 15 (dBm)

0 to 510 M(Hz),
50 to 15 dBm

0 (Min Meas Time) to
99:59:59 s

Off (0)/On (1)

LINF/LOGF/LIST/POWE

LINF/LIST

201 (NA, ZA),
801 (SA)

500 MHz

0 Hz

500 MHz

500 MHz,
20 dBm

0 Hz,
–50 dBm

500 MHz,
30 dBm

Min Meas
Time

On

LINF

LINF

S

S

S

S

S

S

S

S

S

S

S

S

S

S

NZ

NZ

NZ

NZ

NZ

S

2C

2C

2C

2C

2C

2C

2C

2C

2C

2C

2C

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

4

4

4

4

4

4

4

4

4

6

6

I

I

I

I

I

I

D

H

H

Module

In SWPT LIST, set MEAS
POINT of sweep. (In SA, it’s
available when SPAN 0.)

In SWPT LIST, set SPAN
value of sweep parameter.

In SWPT LIST, set START
value of sweep parameter. Min
and max value of START, STOP,
CENTER depend of RBW.

In SWPT LIST, set STOP value
of sweep parameter. Min and
max value of START, STOP,
CENTER depend on RBW.

In SWPT LIST, set SPAN
value of sweep parameter.

In SWPT LIST, set START
value of sweep parameter.

In SWPT LIST, set STOP
value of sweep parameter.

Turn sweep time auto setting
off and set arbitrary value to
sweep time. (In SA, query only.)

Select Auto and Manual of
Sweep Time (In SA, Auto only.)

Select Sweep Type.

Select Sweep Type.

Command Range Initial Value Attribution Description

SENSe
:FREQuency

:CENTer
STEP
[:INCRement]

:AUTO
:MODE
:SPAN

:FULL
:STARt
:STOP

<numeric>|DMARker|MARKer

<numeric>|DMARker|MARKer
ON|OFF
FIXed|LIST|SWEep
<numeric>|DMARker|MZAPerture

<numeric>|MARKer
<numeric>|MARKer

(Parameter changed

(Parameter changed)

(Parameter changed)

(Parameter changed)
(Parameter changed)

[no query]

[SENSe Subsystem]

(a)

(b)

An example of the improvement in function definition. (a) Before improvement. (b) After improvement.

94 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Checkpoint at the End of the Implementation Phase. At
the second new checkpoint in the development process,
SWQA confirms that the test scripts reflect all the content
of the function definitions, and that there are no signifi-
cant problems in the test results. The project cannot go
on to the system test phase without this confirmation.

System Test Phase—Redefinition of System Testing.

In an ideal testing process, we can finish system testing
when we have executed all of the test items in the test
cases we have written. However, if many single-function
defects are left in the software at the start of system test,
we will detect single-function and combination-function
defects simultaneously, and the end of testing will become
unclear. Therefore we use statistical methods, such as
convergence of the defect curve, to decide when to end
the system test phase.

In our improved process, we can start the system test
phase with high-quality code that includes only a few
single-function defects. Thus, we can redefine the testing
method to get more efficiency in detecting the remaining
defects. We divide the system test items into two test
groups. The first group uses black box testing. We write
these test cases based on the instrument characteristics
as a system and on common failures that have already
been detected in the preceding series products. The
second group is measurement application testing, which
is known as white box testing. The R&D designers, who
clearly know the measurement sequence, test the mea-
surement applications according to each instrument’s
specifications. We try to decide the end of system test
based on the completion of test items in the test cases
written by R&D and SWQA. We try not to depend on
statistical methods.

Checkpoint at the End of the System Test Phase. We use
this checkpoint as in the previous process, as an audit
point to exit the system test phase. SWQA confirms the
execution of all test items and results.

A Feasibility Study of Automatic Test

Before implementing the improved development process
described above, we wanted to understand what kind of
function is most likely to cause defects and which parts
we can’t test automatically. Therefore, we analyzed and
summarized the defect reports from a previous product
series (five products). We found that the front-panel keys,
the HP-IB remote control functions, and the Instrument

BASIC language are most likely to cause defects. We also
observed that the front-panel keys and the display are
difficult to test automatically. Based on this study, we
knew which parts of the functions needed to be written
clearly on the function definitions, and we edited the test
items and checklist to make the system test more efficient.

Application of the Improvement Process

Project Y. Product Y is an extension and revision of Prod-
uct X, a combination network, spectrum, and impedance
analyzer. The main purpose of Project Y was to change
the CRT display to a TFT (thin-film transistor) display and
the HP-IB printer driver to a parallel printer driver. Most
of the functions of the analyzer were not changed.

Since Product Y is a revision product, we didn’t have to
write new function definitions for the HP-IB commands.
Instead, we used the function reference manual, which
has the closest information to a function definition. The
main purpose of the test script was to confirm that each
command worked without fail. We also tested some com-
bination cases (e.g., testing each command with different
channels). The test script required seven weeks to write.
The total number of lines is 20,141.

For the automatic tests, we analyzed the defect reports
from five similar products and selected the ones related
to the functions that are also available in Product Y (391
defect reports in the system phase). Then we identified
the ones that could be tested automatically. The result
was 140 reports, which is about 40% of the total. The
whole process took three weeks to finish and the test
script contains 1972 lines. The rest of the defect reports
were checked manually after the end of system test.
It took about seven hours to finish this check.

Both of the above test scripts were written for an in-house
testing tool developed by the HP Santa Clara Division.3

An external controller (workstation) transfers the
command to the instrument in ASCII form, receives the
response, and decides if the test result passes or fails.

Instrument BASIC (IBASIC), the internal instrument con-
trol language, has many different functions. It comes with
a suite of 295 test programs, which we executed automati-
cally using a workstation. The workstation downloaded
each test program to the instrument, ran the program, and
saved the result. When all the programs finished running,
we checked if the result was pass or fail.

95 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

For all of the automatic testing, we used the UNIX make
command to manage the test scripts. The make command
let each test program execute sequentially.

Using the test scripts, we needed only half a day to test all
of the HP-IB commands and one day to test the IBASIC.
Since Product Y is a revision product, we also used the
test scripts to test its predecessor, Product X, to confirm
that Product Y is compatible with Product X. The test
items in the Product X checklist were easily modified to
test Product Y.

Project Z. Product Z belongs to the same product series
as Product Y (a combination network, spectrum, and
impedance analyzer). The reuse rate of source code is
77% of Product Y.

One R&D engineer took one month to finish the first draft
of the function definitions. To test the individual HP-IB
commands, since the necessary function definition infor-
mation existed, we easily modified the test script for
Product Y to test Product Z. We employed a third-party
engineer to write the test scripts. This took five weeks.

Since Product Z is in the same series as Product Y, we are
reusing the test scripts for Product Y and adding the new
test scripts corresponding to the new defects that were
detected in Product Y to test Product Z.

The IBASIC is the same as Product Y’s, so we use the same
test program for Product Z. The automatic test environ-
ment is also the same as for Product Y.

Since Product Z is still under development, we don’t have
the final results yet. We use the test scripts to confirm the
individual HP-IB commands periodically. This ensures that
the quality of the instrument’s software doesn’t degrade
as new functions are added. At this writing, we haven’t
started system test, but we plan to reuse the same product
series checklist to test Product Z.

Results

Project Y. In this project, we found 22 mistakes in the
manual, 66 defects in Product X while preparing the test
scripts, and 53 defects in Product Y during system test.
The following table lists the total time spent on testing
and the numbers of defects that were detected in Product
X in Project X and Project Y.

Table I
Defects found in Product X

Project X Project Y

Testing Time (hours) 1049 200

Number of Defects 309 88

According to this data, using the test scripts based on the
function reference manual, we detected 88 defects in
Product X during Project Y, even though we had already
invested more than 1000 test hours in Project X and the
defect curve had already converged (Figure 3). We con-
clude that testing the software with a test script increases
the ability to detect defects. Also we see that a function
definition is indispensable for writing a good test script.

Since the automatic test is executed periodically during
the implementation phase, we can assume that no single-
function defects remained in Product Y’s firmware before
system test. Since Product Y is a revision product, there
were only a few software modifications, and we could
assume that the test items for the system testing covered
all the modified cases. Therefore, we could make a deci-
sion to stop the system test when all the test items were
completed, even though the defect curve had not con-
verged (Figure 10). However, for a platform product or
an extension product that has many software modifica-
tions and much new code, the test items of the system
test are probably not complete enough to make this deci-
sion, and we will still have to use the convergence of the
defect curve to decide the end of the system test. Never-
theless, it will always be our goal to make the test items
of the system test complete enough that we can make
decisions in the future as we did in Project Y.

The test script is being used for regression testing during
enhancement of Product Y to prevent the side effects
caused by software modifications.

In Figure 11, we compare the test time and the average
defect detection time for these two projects. Because
Product Y is an extension of Product X, the results are
not exactly comparable, but using the test script appears
to be better because it didn’t take as much time to detect
the average defect.

96 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Figure 10

55

120
Test Hours

50

45

40

35

30

25

20

15

10

5
100806040200

N
um

be
r o

f D
ef

ec
ts

Defect curve for Project Y.

We needed time to write the test scripts, but the system
test phase became shorter, so the total development time
was shorter for Project Y. The enhancement cost will be
lower because we can reuse the same test script for
regression testing.

Project Z. We expect that the quality of Product Z will be
high before system test because we test Product Z periodi-
cally in the implementation phase and confirm the result
before entering system test.

The additional work of the improvement process is to
write formal function definitions and test scripts. Since
this project is the first to require a formal function defini-
tion, it took the R&D engineer one month to finish the
first draft. For the next project, we expect that the func-
tion definition can be mostly reused, so the time needed
to write it will be shorter.

The test scripts are written during the implementation
phase and do not affect the progress of the project. There-
fore, we only need to wait about a month for writing the
function definition before starting the implementation
phase, and since the time needed for system test will be
shorter, the whole development process will be faster.

Since we are reusing the test scripts of Product Y, the
time for writing test scripts for Product Z is two weeks
shorter than for Product Y. Thus, for a series product, we
can reuse the test scripts to make the process faster. Also,
making test scripts is not a complicated job, so a third-
party engineer can do it properly.

Figure 11

0.0402

0.0273

0.05

0.04

0.03

0.02

0.01

0

En
gi

ne
er

-M
on

th
s

pe
r D

ef
ec

t

En
gi

ne
er

-M
on

th
s

14

12

10

8

6

4

2

0

12.43

3.91

Project YProject X Project YProject X
(a) (b)

Defect Correction

System Test

Test Pattern

Cost of software testing for Projects X and Y. (a) Engineer-months spent on software testing. (b) Engineer-months per defect.

97 May 1998 • The Hewlett-Packard JournalArticle 12 • 1998 Hewlett Packard Company

Conclusion

We analyzed the software (firmware) development prob-
lems of the Hewlett-Packard Kobe Instrument Division
and decided on an improvement process to solve these
problems. This improvement process has been applied to
two projects: Project Y and Project Z. The results show
that we can expect the new process to keep the software
quality high with a short development period. The main
problems—deteriorating software quality and increasing
enhancement cost—have been reduced.

This improvement process will be standardized and ap-
plied to other new projects. It will also make our software
development process conform to the key process areas of
CMM (Capability Maturity Model) level 2 and some part of
level 3.1,2

Acknowledgments

We cannot overstate the importance of the work of Mitsuo
Matsumoto on the automatic IBASIC tests. We would like
to thank Akira Nukiyama and several of our colleagues
for reviewing this paper and giving valuable comments.

References

1. M.C. Paulk, et al, Capability Maturity Model for Software,

Version 1.1, Carnegie Mellon University, SEI-93-TR-024.

2. M.C. Paulk, et al, Key Practices of the Capability Maturity

Model, Version 1.1, Carnegie Mellon University, SEI-93-TR-025.

3. B. Haines, UNIX-Based HP-IB Test Tool (Ttool) Operation

Manual, 1991.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

May 1998 • The Hewlett-Packard Journal98Article 13 • 1998 Hewlett Packard Company

A Compiler for HP VEE

With the addition of a compiler, HP VEE programs can now benefit from

improved execution speed and still provide the advantages of an interactive

interpreter.

This article presents the major algorithmic aspects of a compiler for the

Hewlett-Packard Visual Engineering Environment (HP VEE). HP VEE is a

powerful visual programming language that simplifies the development of

engineering test-and-measurement software. In the HP VEE development

environment, engineers design programs by linking visual objects (also called

devices) into block diagrams. Features provided in HP VEE include:

� Support for engineering math and graphics

� Instrument control

� Concurrency

� Data management

� GUI support

� Test sequencing

� Interactive development and debugging environment.

Beginning with release 4.0, HP VEE uses a compiler to improve the execution

speed of programs. The compiler translates an HP VEE program into byte-

code that is executed by an efficient interpreter embedded in HP VEE. By

analyzing the control structures and data type use of an HP VEE program, the

compiler determines the evaluation order of devices, eliminates unnecessary

run-time decisions, and uses appropriate data structures.

The HP VEE 4.0 compiler increases the performance of computation-intensive

programs by about 40 times over previous versions of HP VEE. In applications

where execution speed is constrained by instruments, file input and output, or

display update, performance typically increases by 150 to 400 percent.

������ �������

����	�� ��������

������ �������

A member of the technical

staff at HP Laboratories

since 1989, Steve Green-

baum is currently researching “hardware-in-

the-loop” systems and programming for distrib-

uted systems. He has a PhD degree in computer

science (1986) from the University of Illinois at

Urbana-Champaign and a BS degree in com-

puter science (1980) from Syracuse University.

Steve was born in New York City, is married,

and has two children. In his leisure time he

enjoys playing guitar and taking field trips with

his family.

����	�� ��������

Stanley Jefferson is a mem-

ber of the technical staff at

HP Laboratories, where he

began his career at HP in 1990. He is currently

doing research in the area of “hardware-in-the-

loop” systems. He has a PhD degree in com-

puter science (1988) from the University of

Illinois at Urbana-Champaign. He received BS

(1977) and MA (1979) degrees in mathematics

from the University of California at Davis. Stan

was born in Oakland, California, is married,

and has two children. He enjoys playing piano

and day trips to the beach with his family.

May 1998 • The Hewlett-Packard Journal99Article 13 • 1998 Hewlett Packard Company

The compiler described in this article is a prototype devel-
oped by HP Laboratories to compile HP VEE 3.2 programs.
The compiler in HP VEE 4.0 differs in some details.The
HP VEE prototype compiler consists of five components:

� Graph Transformation. Transformations are performed
on a graph representation of the HP VEE program. The
transformations facilitate future compilation phases.

� Device Scheduling. An execution ordering of devices
is obtained. The ordering may have hierarchical ele-
ments, such as iterators, that are recursively ordered.
The ordering preserves the data flow and control flow
relationships among devices in the HP VEE program.
Scheduling does not, however, represent the run-time
flow branching behavior of special devices such as
If/Then/Else.

� Guard Assignment. The structure produced by schedul-
ing is extended with constructs that represent run-time
flow branching. Each device is annotated with boolean
guards that represent conditions that must be satisfied
at run time for the device to run. Adjacent devices with
similar guards are grouped together to decrease redun-
dancy of run-time guard processing. Guards can result
from explicit HP VEE branching constructs such as
If/Then/Else, or they can result from implicit properties
of other devices, such as guards that indicate whether
an iterator has run at least once.

� Type Annotation. Devices are annotated with type infor-
mation that gives a conservative analysis of what types
of data are input to, and output from, a device. The an-
notations can be used to generate type-specific code.

� Code Generation. The data structures maintained by the
compiler are traversed to generate target code. The

prototype compiler can generate C code and byte-code.
However, code generation is relatively straightforward
to implement for most target languages.

To simplify the presentation, many aspects of the HP VEE
language and compiler are omitted or given cursory treat-
ment. Notable in this regard is our cursory treatment of
concurrency mechanisms (both the prototype compiler
and the HP VEE 4.0 compiler handle concurrency). Only
a brief, somewhat formal description of the HP VEE lan-
guage is presented. Less formal descriptions of HP VEE
are given in the HP VEE manuals.1,2

Semantic Overview

HP VEE programs are constructed by connecting devices
together to form block diagrams. A simple HP VEE pro-
gram is displayed in Figure 1. HP VEE has an extensive
collection of built-in devices. Iterator, junction, and condi-
tional devices affect program control flow. Other devices
manipulate data or perform side-effects (some devices do
both). Another set of devices are available for applied
mathematics, controlling instruments, displaying engi-
neering graphs, building user interfaces, data manage-
ment, and performing I/O.

Pins and Devices

Devices may have any number of input and output pins,
depending on the device’s function. Connections can be
made from output pins to input pins to route data or con-
trol signals between devices. Several connection lines can
emanate from a single output pin, but at most one connec-
tion line can be attached to an input pin. A pin is consid-
ered to be connected if there is a connection between it
and another pin. Unconnected pins are not necessarily an

Figure 1

A simple HP VEE program to compute the area of a circle.

May 1998 • The Hewlett-Packard Journal100Article 13 • 1998 Hewlett Packard Company

error condition, but they serve no useful purpose. It will
simplify discussions to assume that they are not present.
Thus, the statement “data is placed on all output pins”
implicitly excludes all unconnected output pins.

When a device executes, it performs a computation based
on the values present on its input pins (if any) and pro-
duces results that are placed on appropriate output pins
(if any). The value placed on an output pin is also propa-
gated to any input pins that are connected to it. The com-
bination of placing a value on an output pin and propagat-
ing the value is called “firing the output pin.” Only one
value can be present on a pin, so previous values are over-
written by new values. Unlike traditional data-flow models
where input values are consumed, in HP VEE values on
data input pins remain available for further use after they
are used as input by an executing device.

There are five kinds of pins that may be attached to a
device:

� Data pins provide the input/output interface to a de-
vice. The data input pins attach to the left edge of a
device and the data output pins attach to the right edge
of a device. Most devices will not operate until data is
present at all data input pins. After a device operates,
data is placed on the output data pins.

� Sequence pins are an option that allow greater control
over the order in which devices operate. Most devices
have sequence input and sequence output pins. The
sequence input pin is attached to the middle of the top
edge of a device and the sequence output pin is attached
to the middle of the bottom edge of a device. All of the
devices in Figure 1 have unconnected sequence pins.
Either sequence pin may be left unconnected. If the se-
quence input of a device is connected, then the device
will not operate until the data input pins and sequence
input pin have data. Sequence output pins are explained
later.

� Execute pins are special input pins that force the device
to operate and place results on its output pins. Execute
pins are usually referred to as XEQ pins. XEQ pins operate
regardless of the presence of other inputs.

� Control pins are special inputs that affect the internal
state of a device, but have no effect on the propagation
of data values through the device. Common control pins
are Clear and Reset. Control pins operate regardless of
the presence of other inputs.

� Error pins are optional output pins. The presence of an
error pin causes any errors generated by the attached
device to be trapped. The appropriate error code is
output on the error pin.

A device can also have individual properties that are spe-
cified at development time. For example, the buffer size
and grid type can be specified for a strip chart display
device.

Data Types

The data types in HP VEE are integer, real, complex, polar
complex, waveform, spectrum, coordinate, enum, text, and
record. Multidimensional arrays can be built from these
data types. Generally, the input and output pins on a
device are not typed, and connections are never typed.
Rather, the data objects themselves are typed. Most of the
devices in HP VEE will accept any type of data, and they
automatically perform any necessary type conversions.
For example, the addition device will accept any combi-
nation of integer, real, complex, or array arguments.
Appropriate types are output based on the input types.
Some devices require particular data types as input and
will either perform a conversion or signal an error when
presented with a data object not meeting the type require-
ment. Most devices allow a user-specified type conversion
to be associated with each input pin. In addition, most
devices allow the user to require that the data be a
certain shape (scalar, array, one-dimensional array, two-
dimensional array, etc.). There is a nil value that is a value
of every type and means “no information.” The absence of
a value at a pin is different from the presence of a nil value.

Terminology

A connection is a set (unordered) consisting of an input
pin and an output pin. Devices x and y are connected if
there is a connection c such that one of the pins in c is
attached to device x and the other pin in c is attached to
device y. Unless otherwise specified, connections be-
tween devices are undirected. Hence, a connection be-
tween devices x and y is also a connection between de-
vices y and x. If x1,...,xn is a sequence of devices and
c1,...,cn�1 is a sequence of connections such that ci is a
connection between xi and xi�1 for i�1,...,n�1, we say
that c1,...,cn�1 is an (undirected) path from x1 to xn. For
example, in Figure 1 there is a path from the Radius de-
vice to the Real device. A diagram is pathwise connected

if there is at least one path between every pair of devices

May 1998 • The Hewlett-Packard Journal101Article 13 • 1998 Hewlett Packard Company

in the diagram. A device x is a direct ancestor of a device
y if there is a connection from an output pin of x to an
input pin of y. In this case, we also say that y is a direct

descendant of x. A device u is an ancestor of a device v if
there is a sequence of devices w1,...,wn with u�w1 and
v�wn such that wi is a direct ancestor of wi�1 for
i�1,...,n�1. Also, if ci is a connection from an output pin
of wi to an input pin of wi�1, then the sequence c1,...,cn�1

is called a directed path from u to v. If u is an ancestor of
v, we may also say v is a descendant of u. A cycle or feed-

back loop is a directed path from a device to itself. A pin p
occurs in a cycle c1,...,cm if p is a member of some ci. The
descendants of a device u are all the devices v for which
a directed path exists from u to v. In a diagram with a
cycle, it is possible for a device to be a member of its
descendants.

Data Flow

An HP VEE program is run by executing the devices in the
program. The order in which the devices execute is con-
strained by the connections between the devices and
some built-in priority rules. We say that a device’s data

dependencies are satisfied if all of its connected data
input pins and its sequence input pin (if connected) have
data present. The basic rule governing the execution
order of devices is that a device can execute only when
its data dependencies are satisfied. We call this the data

dependency rule.

A device that is neither an iterator, junction, nor asynchro-
nous* device is called a primitive device. The execution
order of primitive devices in a connected diagram where
the only connections are between data output pins and
data input or sequence input pins is governed by the data
dependency rule. A diagram of this form is run by allowing
each device to execute at most once, subject to the order-
ing constraint imposed by the data dependency rule. One
way to run such a diagram is to repeatedly choose an un-
executed device whose data dependencies are satisfied
and execute it until there are no devices left to choose.
Each time a device executes, the values propagated from
its outputs may satisfy the data dependencies of descen-
dant devices, thus making additional devices available for
execution. The process of running a diagram (or subdia-
gram) D is referred to as a sweep over D. The program in
Figure 1 can execute its devices in the order Radius, Real,

* Asynchronous devices, such as Delay and Confirm, are not treated in this paper.

Figure 2

A diagram with two independent threads.

Formula, Alphanumeric or in the order Real, Radius, Formula,
Alphanumeric.

A maximal pathwise connected subdiagram of a diagram
D is called an independent thread of D (connections to
control pins are ignored when determining independent
threads in HP VEE). For example, the diagram in Figure 2

has two independent threads. Suppose that D is an HP
VEE program consisting of n independent threads. Then a
sweep over D initiates a subsweep over each of the n in-
dependent threads. Each subsweep executes indepen-
dently of the others and the n subsweeps all run concur-
rently (or in a time-sliced manner). The sweep over D is
completed when all n subsweeps are completed.

Later, we will present control constructs that initiate sub-
sweeps over subdiagrams. In general, it is possible to have
arbitrarily nested subsweeps during the execution of a
program. Let s1,...,sn be a sequence of sweeps such that
si�1 is a subsweep of si for i�1,...,n�1. Then, the se-
quence s1,...,sn is called a nested sequence of sweeps, and
we say that si is a supersweep of sj whenever i�j. If
s1,...,sn is a nested sequence of sweeps and we are cur-
rently executing the sweep sn, then s1,...,sn are said to be
active, but only sn is said to be executing.

The following execution nesting rule is a generalization
of the rule that devices execute at most once per sweep.
Let s1,...,sn be a nested sequence of sweeps and d be any
device except a junction device. If d is directly executed
by the innermost subsweep sn, then device d can not be
directly executed again by any of the si, for i�n, but it
may be directly executed again by a newly created sub-
sweep of an si for i�n.

We glossed over a technical detail regarding device execu-
tion. Consider a device that has a data input pin, an XEQ

May 1998 • The Hewlett-Packard Journal102Article 13 • 1998 Hewlett Packard Company

pin, and a control pin. Each of these pins corresponds
to a different action. Which actions qualify as executing
the device? The detailed answer is given in the section
“Execute and Control Pin Splitting” on page 107. The
short answer in this particular case is that the device is
viewed as three devices where each device corresponds
to a different input pin, and each of the three devices can
execute subject to the execution nesting rule.

Sequence Pins

In some cases data dependencies in HP VEE are not capa-
ble of adequately specifying the order of execution of de-
vices. Sequence output pins provide an additional mecha-
nism for constraining the execution order. The intuitive
idea behind sequence output pins is that the sequence
output pin of a device d fires after d has executed and
only when no further execution is possible in the devices
descended from the data and error output pins of d. Infor-
mally, the sequence output pin on device d attempts to
capture the notion of completing the future computation
descended from d. In the example shown in Figure 3 the
sequence out pin of device A does not fire until A, B, and C
have executed. It follows that the devices can only exe-
cute in the order A, B, C, and D.

Because of cycles, descendants of a device d may include
devices that executed before d. Devices that executed
before d cannot reasonably be considered part of the fu-
ture computation descended from d. Therefore, if we are
in the midst of a sweep that has executed device d, we
define the future computation descended from d as the
descendants of the data and error output pins of d that
did not execute before d in any currently active sweep.

Figure 3

A sequence pin example. The only possible order of execution
is A, B, C, and D. Note that the lines do not connect where
they cross.

A couple of issues complicate the determination of when
to fire a sequence output pin. The following must be en-
sured before firing the sequence output pin of any exe-
cuted device d:

1. The execution of devices in the future computation
descended from d has proceeded as far as possible.

2. There are no executed devices in the future compu-
tation descended from d having unfired sequence
output pins.

Determining (1) is complicated by the possible presence
of devices in the future computation descended from d
that depend on data coming from devices not descended
from d. This is illustrated in Figure 4. A very coarse-
grained but simple way to ensure (1) is to reach the point,
after evaluating d, where the execution of devices in the
current sweep has proceeded as far as possible without
firing a sequence pin. Once this point is reached, a se-
quence output pin can be chosen so that (2) is ensured.
One way to ensure (2) is to choose the most recently
executed device with an unfired sequence output pin and
fire that device’s sequence output pin. It is possible to fire
sequence pins more aggressively and still ensure (1) and
(2), but it requires deeper analysis.

We now give a more detailed account of sequence pin fir-
ing in HP VEE 3.2. Consider a sweep (or subsweep) over a
diagram D that has run to the point where no device in D
is executing and no device in D is capable of executing
without firing a sequence output pin. Choose an executed

Figure 4

The future computation descended from A depends on
data from E. Devices A, E, B, and C must execute before
the sequence output pin on A fires.

May 1998 • The Hewlett-Packard Journal103Article 13 • 1998 Hewlett Packard Company

device d in D such that d is the most recently executed
device having an unfired sequence output pin (if there are
none then the sweep is finished). Propagate a nil value
from the sequence output pin of d, and continue the sweep
of D until no unexecuted devices with satisfied data de-
pendencies are available. Repeat this process of firing
sequence output pins until all sequence output pins on
executed devices in D have been fired. When further repe-
titions are not possible, the sweep over D is completed.

Note that sequence output pins in different subsweeps are
handled independently. Sequence output pins are fired as
part of the subsweep that executed their attached device,
and the order of their firing depends only on the devices
and sequence output pins in that subsweep.

If/Then/Else

The If/Then/Else device is used for branching the data flow,
and hence the execution flow. The programmer specifies
any number of named data input pins and a list of expres-
sions over those pins. Each expression corresponds to a
different data output pin. When the If/Then/Else device
executes, the expressions are evaluated in order until the
first expression that evaluates to a True (nonzero) value is
found. At this point, expression evaluation ceases, and the
value is output on the data output pin corresponding to the
true expression. If no expression evaluates to True, then
zero is output on the default Else data output pin. Note
that only one data output pin of the If/Then/Else device
outputs a value. Thus, the other data output pins will not
propagate a value, and hence none of their descendants
will be able to execute (because of the data dependency
rule).

Iterators

One consequence of the execution nesting rule is that
feedback loops in HP VEE can never result in iteration.
Instead, HP VEE has iterator devices that explicitly per-
form iteration. These iterator devices repeatedly run the
subdiagram descended from their output pin. It should be
noted that iterator devices do not impose any hierarchical
structure on the displayed HP VEE program, but are sim-
ply displayed as an ordinary device. The ForCount iterator
is shown in Figure 5. The ForCount device outputs the
sequence 0, 1, 2,...,n�1, where n is an iteration count that
can be input at runtime or set at development time. When
the ForCount is run during a sweep, it outputs a zero
(assuming the iteration count is greater than zero) and
starts a subsweep on the diagram descended from its
output pin. When the subsweep is finished, the ForCount
determines whether it has output its last value. If not, the
ForCount outputs its next value and performs another sub-
sweep. This process of performing subsweeps continues
until the final value of the ForCount is output, at which time
the ForCount ends its execution. Note that the ForCount is
in an outer sweep relative to the subsweeps on its descen-
dants, and that it is executed only once during the sweep
that initiated its execution (one can think of the ForCount
as being in a paused state when its subsweeps run).

The following active data rule applies to devices such as
iterators, junctions, and UserObjects that can create a new
subsweep. Let d be a device that creates a new subsweep.
Immediately before each subsweep created by d, all data
created in the previous subsweep (if there was one) per-
formed by d is inactivated (that is, made unusable). This

Figure 5

An example using ForCount. The result of running the program is shown. The Formula and Logging AlphaNumeric devices
have been iterated five times.

May 1998 • The Hewlett-Packard Journal104Article 13 • 1998 Hewlett Packard Company

Figure 6

This example, shown after execution, illustrates that data created outside the ForCount’s subsweeps, by the Real constant device,
remains active.

includes data created in subsweeps that are nested inside
the subsweep performed by d. To lend a more intuitive
feel to feedback loops, certain values occurring in feed-
back loops are exempted from inactivation. Specifically, if
an input pin occurs in a cycle and the data value on that
pin was not used in the sweep it was generated in, then
the data value on that pin is not inactivated (since the
intent of the feedback loop was to use this value on the
next iteration).

Without the active data rule, the data dependencies of
devices could be trivially satisfied on subsequent sub-
sweeps. The active data rule is illustrated in Figure 6 and
Figure 7.

Besides ForCount, there are other iterator devices that
work similarly because they output values and repeatedly
perform subsweeps on their descendant subdiagrams un-
til a termination condition is reached. Iterator devices can

occur as descendants of iterator devices to any depth. This
will result in nested subsweeps. If two iterator devices are
in the same sweep, we will assume that the subdiagrams
descended from any of the output pins (including se-
quence and error outputs) of one device do not intersect
with the subdiagrams descended from any of the output
pins of the other device.* All iterator devices in the same
innermost sweep execute as a group, concurrently or in a
time-sliced manner, so that no iterator is starved by an-
other iterator performing a large (or unbounded) number
of iterations.

Junctions

The junction device allows data from two or more data
input pins to be merged into a single data output pin. This
is useful for merging the branches of an If/Then/Else back

* In VEE 3.2 intersection was allowed, but the meaning was not well-defined. In VEE 4.0
iterator intersection is signaled as an error.

Figure 7

This example, shown after execution, illustrates that the data placed on the AlphaNumeric’s data input pin on the next-to-last
iteration was inactivated at the start of the last iteration. Otherwise, the AlphaNumeric would have displayed the data. Note that
the last value output by the ForCount is 9.

May 1998 • The Hewlett-Packard Journal105Article 13 • 1998 Hewlett Packard Company

Figure 8

An example of a junction merging the branches of an If/Then/Else. When run, this program displays the absolute value of its input.
In this case, the AlphaNumeric would display 4 when the program is run.

together, for initializing feedback loops, or for iterating
the inputs of the junction. See Figure 8 and Figure 9 for
examples. In the If/Then/Else merge and feedback initial-
ization cases, at most one of the junction device’s data
input pins will receive a value during a sweep. Thus, the
junction device does not have to satisfy the data depen-
dency rule to execute. The junction device can execute
whenever one or more data input pins has a value. If a
junction, j, initiates a sweep s of its descendants, then
neither s nor any subsweep nested inside s may execute j.
This restriction prevents iteration resulting from feedback.
Unlike other devices, the junction device consumes its
data input values when it executes. When the junction
device executes, it repeatedly sweeps over the descen-
dants of its data output pin just like an iterator, using the

Figure 9

This example, shown after execution, illustrates a junction
being used to initialize a feedback loop.

data input values as data output values. Thus, subsweeps
performed by a junction are subject to the active data
rule. Although a junction performs subsweeps in the same
manner as an iterator, it is not an iterator. The prototype
compiler assumes that junctions that are in the same
sweep execute in an arbitrary serial order rather than
concurrently, and the descendants of different junctions
in the same sweep are allowed to intersect.

User Objects

Subprograms can be written in HP VEE using the User-
Object device. The UserObject provides a subwindow in
which a block diagram can be constructed. A UserObject is
shown in Figure 10. The data input pins of a UserObject
have corresponding terminals inside the UserObject’s sub-
window. The diagram contained in the UserObject can con-
nect to these terminals in order to obtain the data on the
UserObject’s data input pins. The data output pins of a
UserObject are handled similarly. UserObjects operate under
the same rules as any primitive device. All data inputs
must be present before the UserObject executes. When the
UserObject executes, its diagram is executed as if it were
a top-level diagram. The sweep over the UserObject’s
diagram runs further subsweeps over the independent
threads of the diagram. When the sweep of the User-
Object’s diagram is finished, the last values placed on the
terminals of the UserObject’s data output pins are trans-
ferred to their corresponding data output pins, and the
UserObject completes its execution. UserObjects may also
have error and sequence pin connections.

May 1998 • The Hewlett-Packard Journal106Article 13 • 1998 Hewlett Packard Company

Figure 10

A UserObject that determines the sign of its input.

Phases of a Sweep

During a sweep s over a diagram D, a priority ordering
affects the order of device executions and sequence out-
put pin firings in D. If a subsweep of s is initiated, then its
priority ordering will begin fresh and will be independent
of the ordering in sweep s. The following summarizes the
priority classes of a sweep from high to low priority.

1. If there are primitive devices whose data dependen-
cies are satisfied, then one is chosen and executed.
This process is continued until there are no primitive
devices whose dependencies are satisfied. Note that
additional primitive devices may have their data de-
pendencies satisfied as data is propagated from the
output pins of executed devices, and thus they will
become eligible for execution during this priority
phase.

2. All junction devices that have data present on at least
one input pin are executed. The junctions are executed
in an arbitrary serial order, and each one initiates a
new subsweep.

3. All iterator devices that have their data dependencies
satisfied are executed. The iterator devices are exe-
cuted concurrently and each one initiates a new sub-
sweep.

4. If a sequence output pin is eligible to fire, it is fired as
described earlier, and then the current sweep contin-
ues at step 1. If there are no sequence output pins
eligible to fire, the current sweep is over.

Example

Consider the execution of the program in Figure 9. The
zero constant device executes first as it is the only primi-
tive device with its data dependencies satisfied. Then the
junction device executes, outputting the data that is on its
upper data input pin. At this point there are no primitives
or junctions that can execute, so we execute the ForCount.
The ForCount outputs a zero and starts a subsweep over its
descendants. The subsweep begins with the highest prior-
ity devices. The addition device is a primitive device and
now has its data dependencies satisfied, so it executes.
The data output by the addition device satisfies the data
dependencies of the display device and the junction.
Since the display device is primitive it has priority over
the junction, so it executes, displaying a zero. There are
now no primitive devices left in the subsweep that can
execute, so the junction executes. The junction outputs
the data that is on its bottom input pin and starts a sub-
sweep. The junction’s subsweep immediately terminates
since all of the descendants of the junction are prohibited
from executing because of the execution nesting rule. No
more devices can execute in the subsweep started by the
ForCount since all of the devices descended from the For-
Count have executed once in this current subsweep. Thus,
the current subsweep ends and the ForCount readies for
another iteration. Before performing the next iteration,
the active data rule is applied, inactivating all of the data
created on the previous sweep except the data that was
output by the junction, since it is exempt because of

May 1998 • The Hewlett-Packard Journal107Article 13 • 1998 Hewlett Packard Company

feedback. The ForCount outputs a one and performs
another sweep. The descendants of the ForCount are all
eligible to run since we have backed out of the subsweep
in which they were previously run. Thus, this second sub-
sweep proceeds in the same manner as the previous sub-
sweep. Iterations continue in this way until the ForCount
has performed five iterations, at which point the top-level
sweep is terminated. Note that feedback is simply a mech-
anism for using values generated in previous sweeps.

Architecture of the Compiler

Block Diagram Representation

The internal representation of an HP VEE program is a
directed graph constructed of objects that represent de-
vices, with edges between these objects corresponding to
the connections visible in the pictorial view. Information
about the pictorial presentation is maintained within the
internal device graph, but the compiler is only concerned
with the connection structure of an HP VEE program.

Transformations

Before the main compilation analysis takes place, the
compiler may modify the internal device graph to simplify
analysis. These modifications replace constructs having
special behaviors by collections of simpler constructs that
all have standard behaviors. Such graph modifications
only affect the internal representation, and are invisible to
the user.

Execute and Control Pin Splitting. For purposes of com-
pilation it is convenient to assume that all nonjunction HP
VEE devices fire only after all their inputs receive data.
However, some HP VEE devices may activate when only a
subset of their inputs have data, typically because such
devices have some execute or control pins (described in
the section “Pins and Devices” on page 99). To avoid hav-
ing to consider the types of input pins when performing
later stages of compilation, devices with such pins are
split into multiple “synthetic” devices such that each syn-
thetic device fires after all its inputs receive data. Synthetic
devices are device types that only exist when created by
the compiler. They are not part of the user-level HP VEE
devices and they never appear on the display.

For example, consider a Sample&Hold device. A Sample&
Hold has a data input pin and an execute pin. Data entering
on the data pin is copied to a buffer in the Sample&Hold

device, but the data is not propagated to the output pin
until the execute pin is fired (that is, receives data).
Figure 11 shows how a Sample&Hold device is split into
two synthetic devices: SH-Set and SH-Xeq.

The semantic role of SH-Set is to store the data from the
data input of Sample&Hold into the buffer associated with
Sample&Hold, and SH-Xeq’s job is to put the data in the
buffer onto the output pin. Links are made between these
devices so the compiler can find either one from the other.
The semantic behavior of this collection of synthetic de-
vices, as so connected, is equivalent to the original single
device in its context. The HP VEE user interface has the
single Sample&Hold device instead of the two separate
devices because the tight functional coupling of the two
behaviors makes it easier to conceptualize the composite
functionality as the action of a single device, making HP

Figure 11

Expansion of execute pins.

Is Converted to

and

May 1998 • The Hewlett-Packard Journal108Article 13 • 1998 Hewlett Packard Company

VEE easier to use. The compiler does the conversion to
simplify compilation.

Like execute pins, control pins also lead to device split-
ting, but they have a simpler reconnection scheme. Con-
trol pins affect the state of a device, but they are not di-
rectly involved in determining when a device can fire.
They only cause side effects within the device. If a device
has N control pins, it is split into N�1 synthetic devices
such that one synthetic device is similar to the original
device but with the control pins removed. Each of the
other N synthetic devices is associated with one control
pin by having the synthetic device’s single “normal” data
input get the input that had gone to the associated control
pin. See Figure 12 for an example (lines attached to con-
trol inputs are drawn with dashed lines in HP VEE). These
synthetic control pin devices implement the side effect that
the associated control pin was meant to perform. Links are
made between the synthetic and original devices to facili-
tate generating code.

There is a subtlety about control pin semantics that is not
addressed merely by splitting. The semantics of control
pins dictate that the action they implement take place
more or less at the time the pin receives data. Thus if a
synthetic device implementing a control pin action has
received data, it should be scheduled to execute as soon
as possible, ahead of other devices that may also be ready
to run. To implement this behavior, control pin devices
are tagged as high-priority devices, which cause the
scheduler to schedule them for execution before normal-
priority devices. This is a general mechanism that can be
used for other devices that need to be run at high priority.

A device with both control and execute pins can be ex-
panded by combining expansion techniques in a straight-
forward way.

Synthesized Constructs. It is sometimes beneficial to
split devices that do not have execute or control pins.
This is useful for devices having complex semantics that
can be implemented with combinations of simpler de-
vices. This can be thought of as using the device level of
HP VEE to implement parts of the compiler. It can also be
viewed as macro expansion.

The compiler uses this idea to implement the OnCycle
device. An OnCycle is split into two synthetic devices and
one standard RepeatUntilBreak iterator. The idea is that
OnCycle is like a RepeatUntilBreak iterator except it only

Figure 12

Expansion of control pins.

Is Converted to

and

and

fires at certain time intervals. This is implemented by ini-
tializing a time variable in a synthetic initialization device,
then running a RepeatUntilBreak iterator whose output
goes into a synthetic device that waits until the proper
time, then that waiting device connects to what the On-
Cycle connected to (see Figure 13).

May 1998 • The Hewlett-Packard Journal109Article 13 • 1998 Hewlett Packard Company

Figure 13

Expansion of an OnCycle device.

Expands into

Scheduling

The scheduler is the part of the HP VEE compiler that de-
termines the order of execution of devices in an HP VEE
program. From the HP VEE device graph, it produces a
schedule, which is a tree representation of a fairly con-
ventional control-flow program (such as what might cor-
respond to a C program).

Although in general the scheduler determines the program
structure, it does not attempt to express the run-time
path-branching aspects of special HP VEE constructs. For
example, the scheduler treats the If/Then/Else device as a
normal primitive device, and therefore assumes all its
output pins will fire each time it is executed, although it
actually only fires a single pin. The scheduler does this
because If/Then/Else can be used in ways that do not di-
rectly map into a typical program structure. A later pass
of the compiler, called guarding, extends the schedule by
adding constructs that represent the flow branching
which was ignored by the scheduler. Guarding also takes
care of some other situations in which run-time decisions
must be made. Guarding is described on page 113.

The basic method used by the scheduler is to traverse
the device graph in proper execution order, producing a
structure that represents the order and program structure
discovered during the traversal. The traversal does not
evaluate the program, but only considers basic aspects of
the device types. For example, iterators are not traversed
multiple times, but the descendants that would be repeat-
edly executed at run time are determined.

When the scheduler encounters a device, the device is
categorized as being in one of four categories, depending
on its type. Other than this categorization, the type of the
device is ignored by the scheduler. The device categories
are: iterators, junctions, asynchronous devices (for exam-
ple, Delay and Confirm), and everything else. Devices in the
last category are referred to as primitive devices. Compila-
tion details for asynchronous devices are not included in
this paper. Although the HP VEE language does not have
pure data flow semantics, data flow is used as a basic
semantic building block. Simple data flow graphs can be
serialized using topological sort, often called topsort,
which is a well known, efficient algorithm.3 The scheduler
is based on topsort, but has significant modifications.

May 1998 • The Hewlett-Packard Journal110Article 13 • 1998 Hewlett Packard Company

Figure 14

Topsort.

Topsort (Graph) {
 Ready–Nodes <– nodes in Graph that have all their input pins fired
 if (Ready–Nodes is Empty)
 return Empty
 else
 Fire outputs of all nodes in Ready–Nodes
 return append(Ready–Nodes, Topsort(Graph – Ready–Nodes))
}

Note: A node with no inputs is ”ready.”

Topsort takes a directed graph as argument and returns a
list of nodes. Each node in the returned list satisfies the
criterion that its ancestors occur before it in the returned
list. All nodes from the graph that can satisfy this criterion
are included. Only nodes that are part of cycles in the
graph cannot be topologically sorted. If there is more than
one topological sort for a graph, any one is a valid result.
See Figure 14 for a sketch of the topsort algorithm. Here
an input is considered to be fired if the output it is directly
connected to has been fired. Nodes with no inputs are
considered to have all their input pins fired.

For a simple data flow graph, the ancestor/descendant
relationship is one of data dependency. The topsort of
such a graph lists devices in an order such that a device
appears in the list after all the devices that produce data
for it. Therefore, in these cases topsort can be used as a
device-ordering compilation mechanism, eliminating the
need for run-time calculation of what to evaluate next.

Priority Ordering. An HP VEE program that contains only
primitive devices and does not use sequence output pins
can be scheduled using topsort. However, adding other
classes of devices or sequence output pins complicates
matters. For this discussion we will consider an HP VEE
program to consist of primitive devices, junctions, and
iterators. UserObjects will be classified as standard primi-
tive devices. We will temporarily ignore sequence out
pins.

The section “Phases of a Sweep” (page 106) described
device classes and their prioritized execution order. The
scheduler reflects this class-based ordering by extending
topsort to keep separate lists of ready devices according
to device class, and scheduling items from each class at
the proper time.

The structure of the HP VEE program being compiled is
reflected in the resulting schedule by having a subsche-
dule computed as a result of the simulated execution of a
control (sweep-inducing) device, and storing that sub-
schedule as the body of the device. For example, the body
of an iterator is that part of the schedule that results from
firing the data output pin of the iterator. This results in a
hierarchical schedule consisting of a list of devices, with
some devices in the list having a subschedule stored as
their body. Subschedules are lists of devices, some of
which may have their own subschedules.

HP VEE maintains a list of all UserObjects, and their dia-
grams are compiled one by one at the top level. When
they are encountered as a device during scheduling, they
are treated like noncompound devices; their contents are
not recursively compiled.

The diagram and environment corresponding to the main
program or a UserObject subprogram is called a context.
Internally, a context is represented by a synthetic context
device whose substructure includes a list of independent
threads (described in the section “Data Flow,” on
page 101). Each independent thread is a directed graph.

When a context is run, the independent threads run inde-
pendently and concurrently. The scheduler represents this
parallel execution using a Fork abstract syntax constructor,
which is also used for parallel iterators and other concur-
rency. The Fork has a list of threads that run in parallel
with each other such that the construct represented by
Fork is considered executing while any of its threads are
executing. Figure 15 shows a listing of the scheduler
program as described so far.

May 1998 • The Hewlett-Packard Journal111Article 13 • 1998 Hewlett Packard Company

Schedule–Context (Context) {
 for each independent–thread in Independent–Threads (Context)
 // Initialize P, J, and I
 Devices–With–No–Inputs(Independent–thread, &P, &J, &I)
 body(independent–thread) <– Schedule(P, J, I)

 // The body of a Context is a Fork of its independent threads.
 body(Context) <– Make–Fork(Independent–Threads(Context))
}

Schedule (P, J, I) {
 if (P not Empty)
 d <– pop(P) // Removes first element from P
 Fire–Data–Out–Pins(d, &P, &J, &I) // May add to P, J, and I.
 return push(d, Schedule(P, J, I))
 else if (J not Empty)
 for each j in J
 Fire–Data–Out–Pins(j, &jP, &jJ, &jI)
 body (j) <– Schedule (jP, jJ, jI)
 return append(J, Schedule(Empty, Empty, I))
 else if (I not Empty)
 for each i in I
 Fire–Data–Out–Pins(i, &iP, &iJ, &iI)
 body(i) <– Schedule(iP, iJ, iI)
 return push(Make–Fork(I), Schedule(Empty, Empty, Empty))
 else
 return Empty
}

Fire–Data–Out–Pins (D, *P &J, *I) {
 For each data output pin, O utPin , of device D, call
 Fire–Pin(Outpin , &P, &J, &I). Return value is not specified.
}

Fire–Pin (OutPin, *P, *J, *I) {
 Fire output pin OutPin. For each input pin IP that
 OutPin is directly connected to, mark IP as ”fired”
 (i.e., as having active data). If IP is attached to device
 D, and firing IP causes D to have its data dependencies
 satisfied, then add D to (the de–reference of) one of P,
 J, or I, which are pointers to variables holding primitive
 devices, junctions, and iterators, respectively. Return
 value is not specified.
}

Make–Fork (Threads) {
 Takes a list of ”threads,” where each thread is a list, and
 returns an object representing a Fork construct where all the
 threads run concurrently with each other. If the list of
 threads is empty, the resulting Fork represents an operation
 that does nothing and returns immediately.
}

Note: &variable denotes the address of variable, as in C. Within a
formal parameter list, * variable indicates that variable is passed by
reference, analogous to C.

Figure 15

Basic scheduling.

May 1998 • The Hewlett-Packard Journal112Article 13 • 1998 Hewlett Packard Company

The lists P, J, and I in the scheduler of Figure 15 are lists
of devices with satisfied data dependencies that are wait-
ing to be scheduled. These lists hold primitive devices,
junctions, and iterators, respectively.

The routine Fire-Pin adds devices to these lists as the de-
vices become ready. When adding a device, Fire-Pin could
place the device at the beginning, end, or somewhere else
in a list. Placing devices at the beginning leads to a more
depth-first traversal, while placing devices at the end is
more breadth-first. The semantics of HP VEE do not con-
strain this aspect of the ordering. The scheduler uses the
depth-first option because that ordering can lead to im-
proved efficiency of guard evaluation at run time (see
“Guarding Phase Passes” on page 113).

Care must be used when Fire-Pin places junctions on their
ready list. Junctions are the only devices the scheduler
sees that have their data dependencies satisfied by any
subset of their input pins (other cases are removed as
described in “Tranformations” on page 107). Thus, when
any input pin of a junction is fired, it can be placed on its

ready list. However, if a junction pin fires while the junc-
tion is currently in the ready list, the junction should not
be placed on the list again. This is easy to accomplish by
maintaining an ignore marker in a junction that is set
when the junction is placed on the ready list and cleared
after a junction is scheduled. Depending on how junctions
are compiled, it may be necessary to record which pins
are fired, even when the junction has its ignore marker set.

Sequence Out Pins. HP VEE 3.2 takes a conservative ap-
proach by not firing sequence output pins until after exe-
cuting all devices that can execute without firing a se-
quence output pin directly in the current sweep (but they
can fire in subsweeps). Then a sequence output pin is
fired (see “Sequence Pins” on page 102 for more about
sequence output pins). A listing of the extended Schedule
routine to implement sequence output pins is shown in
Figure 16.

Figure 16

Implementation of sequence out pins.

Schedule (P, J, I, S) {
 if (P not Empty)
 d <– pop(P) // Removes first element from P.
 if (has–sequence–out–pin(d))
 S <– push(seq–out–pin(d), S) // Add to top of S.
 Fire–Data–Out–Pins(d, &P, &J, &I) // May add to P, J, and I.
 return push(d, Schedule(P, J, I, S))
 else if (J not Empty)
 for each j in J
 Fire–Data–Out–Pins(j, &jP, &jJ, &jI)
 body(j) <– Schedule(jP, jJ, jI, Empty)
 else if (I not Empty)
 for each i in I
 if (has–sequence–out–pin(i))
 S <– push(seq–out–pin(i), S) // Add to top of S.
 Fire–Data–Out–Pins(i, &iP, &iJ, &iI)
 body(i) <– Schedule(iP, iJ, iI, Empty)
 return push(Make–Fork(I) Schedule(Empty, Empty, Empty, S))
 else if (S not Empty)
 Fire–Pin(first(S), &P, &J, &I) // May add to P, J, and I.
 return Schedule(P, J, I, rest(S))
 else
 return Empty
}

Note: Call this, from Schedule–Context, as Schedule(P, J, I, Empty).

May 1998 • The Hewlett-Packard Journal113Article 13 • 1998 Hewlett Packard Company

Figure 17

Simple conditional.

Guarding

As discussed previously, the scheduler ignores the special
nature of If/Then/Else and some other constructs. Instead,
the guarding compilation phase handles these constructs.
The reasons for this division are reviewed here, and the
implementation of guarding is outlined.

At first glance it appears that the scheduler could treat
each output branch of an If/Then/Else as separate evalua-
tion paths and store the subschedules that start with each
branch as separate “bodies” in the scheduled If/Then/Else.
For example, the scheduled If/Then/Else in the HP VEE
program in Figure 17 could have a Then body containing
device A, and an Else branch containing device B. This
could then be compiled into code with a structure like:

if (Test) then A else B.

However, conditionals in HP VEE programs can be used
in very general configurations that make it difficult to
structure the resulting program into a typical If/Then/Else
conditional multibranch structure. Descendants of condi-
tionals can overlap in complex ways and can overlap with

bodies of junctions and iterators as well. For example, the
program in Figure 18 cannot be structured in a simple
nested fashion. The scheduler avoids such issues by treat-
ing If/Then/Else like a standard primitive device. Guarding
extends the schedule to reflect the run-time branch deci-
sions ignored by the scheduler, but uses a different com-
putational approach that is specialized for this task.

Guarding is in fact used as a general run-time control
mechanism, and some generated guards are not associ-
ated with HP VEE’s If/Then/Else conditionals at all. Some
of these will be described below. The various types of
conditions that may apply to a device are combined when
testing at run-time.

Guarding Phase Passes. The compiler’s guarding phase
is divided into two passes: guard assignment and guard
coalescing. Guard assignment annotates each device in
the schedule with a set of guards. This set captures the
conditions that must be satisfied at run time for the de-
vice to be evaluated. If a device D has assigned to it a
set of guards G, then code could be generated for D that
reflects this structure:

if G then D

Guard assignment annotates devices in the schedule, but
the schedule is not otherwise altered. The guard coalesc-
ing pass explicitly extends the schedule by inserting syn-
thetic guarded-body devices into the schedule, based on
the guard annotations made by the guard assignment
pass. A guarded-body device has a set of guards assigned
to its guards property and a subschedule assigned to its
body property. The guards apply to all elements of the

Figure 18

Overlapping conditionals.

May 1998 • The Hewlett-Packard Journal114Article 13 • 1998 Hewlett Packard Company

body. After coalescing, guarding is explicitly represented
in the schedule by the guarded-body devices and code
generation only generates run-time conditions where a
guarded-body occurs.

Although correct programs would result if coalescing
added a guarded-body to each guarded device individu-
ally, the reason for a separate coalescing pass is optimiza-
tion. Coalescing combines guard sets from adjacent
devices into a single guarded-body whose body is a multi-
element segment of the schedule. This avoids many re-
dundant run-time conditionals.

To illustrate the redundancy removed by guard coalesc-
ing, consider two adjacent devices D1 and D2, both
guarded by the same set of guards G. Without coalescing

if G then D1

if G then D2

is generated. With coalescing,

if G then (D1; D2)

is generated. More elaborate coalescing can be per-
formed. For example, if D1 is guarded by G, and D2 is
guarded by G�H, then

if G then (D1; if H then D2)

can result. This last example would be represented in the
schedule with nested guarded-body devices of the form:

Guarded-Body[G, (D1, Guarded-Body[H, (D2)])].

As mentioned previously, when possible the HP VEE pro-
gram graph is scheduled in a relatively depth-first order to
improve efficiency of run-time guard evaluation. The rea-
soning is that the set of guards for a device is usually a
superset of the guards of each of its parents, so schedul-
ing devices adjacent to their ancestors increases the likeli-
hood that adjacent devices have common guards. This
works well for coalescing.

Guard Assignment for If/Then/Else. Guard assignment for
If/Then/Else constructs operate on the list of devices pro-
duced by the scheduler. Recall that devices in the sched-
ule occur in an order such that when considering a partic-
ular device in the schedule, all devices that produce data
consumed by that device will occur earlier in the schedule
(except if there is feedback). So a dependency-order tra-
versal of the HP VEE program graph can be accomplished
by a simple walk down the schedule list. When we get
to a device, we know that its parents have already been
processed.

As described in the section “If/Then/Else” on page 103, an
If/Then/Else fires a single output pin. Guarding implements
the branching implied by this single-pin firing behavior by
associating a unique boolean variable, called a guard,
with each output pin of the If/Then/Else. Before the expres-
sions of an If/Then/Else are evaluated, the guards for all the
pins are set to False. When it is determined which pin
fires, only the guard associated with that pin is set to True.

Note that since an If/Then/Else can have any number of
conditions (and hence, output pins), a single boolean
variable for an If/Then/Else is not adequate. A single multi-
valued flag could be used instead, but then instead of
directly testing its value (True or False), a test would have
to use the value resulting from a comparison of the vari-
able with an appropriate value. We will assume here that
multiple boolean variables are used.

The basic idea of the guard assignment algorithm is to
traverse the schedule list visiting each device, in order,
and for each such device D, consider all the direct parents
of the device. The parent devices will already have been
processed because of the schedule ordering. The guards
from the guards set of each of D’s direct parents are
added to the guards set of D. Also, if a direct parent of D
is an If/Then/Else device, the guard associated with each
If/Then/Else output pin that is directly connected to D is
also added to the guards set of D. Figure 19 gives a more
detailed sketch of the algorithm.

Other Guarding Considerations. A number of important
points have been omitted in the presentation of the guard
assignment algorithm. First, it does not address the fact
that the schedule is not actually a flat list, but instead is a
hierarchical structure because schedule segments are
stored as the bodies of devices such as junctions and iter-
ators. One must consider the relationship between the
guards on a hierarchical device and the guarding of the
body of the device. Also, the interpretation of the guards
set must be clarified. These points are related.

First, consider the meaning of the guards sets. These are
sets of individual guard objects, where each guard repre-
sents a Boolean valued variable. For HP VEE programs
without junctions, a guards set can be interpreted as a
conjunction (logical AND) of the individual guards in the
set. This is because after the graph transformations per-
formed earlier in the compilation (see section “Trans-
formations,” page 107), all nonjunctions the compiler sees
must have data on all their input pins to run. The guards

May 1998 • The Hewlett-Packard Journal115Article 13 • 1998 Hewlett Packard Company

Figure 19

Basic guard assignment for If/Then/Else.

// These do not have specified return values.

Guard–Assignment (Schedule) { // Schedule is a list of devices.
 if (Schedule not Empty)
 Assign–Guards–to–Device(first(Schedule))
 Guard–Assignment(rest(Schedule))
}

Assign–Guards–to–Device (D) { // D is a device.
 for each input pin IP of D
 OP <– output–pin–connected–to(IP)
 Parent <– device–attached–to(OP)
 guards(D) <– guards(D) guards(Parent)
 if (Parent is an IF/Then/Else device)
 guards(D) <– guards(D) {guard(OP)}

inherited from parent devices represent the conditions
needed for each parent to run, and also for direct If/Then/
Else parents to place data on the appropriate lines. Thus,
having data on all input lines requires all the guards to be
true.

A problem arises when HP VEE programs contain junc-
tions. Junctions can run when any subset of their inputs
have data, so the guards on junctions must be disjunctive
(logical OR) instead of conjunctive. If we allow both con-
junctive and disjunctive guarding, the guard sets must be
replaced with potentially complex boolean expressions
(using conjunctions and disjunctions). We show how to
solve this problem below.

Guards assigned to an iterator device should not be prop-
agated into the iterator body. If the guards on the iterator
device are false, the iterator will be skipped, so the body
will be skipped as well. If the guards are true, the iterator

and its body will run. In general, the body implicitly inher-
its the effect of the guards on the iterator. This works for
junction bodies as well, so that the disjunctive guarding
implied by junction semantics does not need to produce
any explicit guards in the junction body. We can conclude
from what we have discussed so far that guards do not
need to propagate into the bodies of junctions or iterators,
and the guard set can indeed be considered to represent a
conjunction.

However, not propagating the guards of junctions and
iterators into their bodies can lead to a problem when data
created inside the body is used outside the body. We will
refer to such data as “escaping” from the junction or itera-
tor. Consider the configuration in Figure 20. Here device
B is in the iterator body, but device C is not. If the If/Then/
Else evaluates such that the condition connected to the
iterator is false, the iterator and its body (device B) will

Figure 20

Data “escaping” from an iterator body.

May 1998 • The Hewlett-Packard Journal116Article 13 • 1998 Hewlett Packard Company

Figure 21

Data escaping from an junction body.

be skipped because the iterator is guarded via the If/Then/
Else. If the iterator does not run, device C should not run
either, because it will not have input data. However, if the
body of the iterator does not explicitly have the iterator’s
guards, device C will not inherit any guards from its par-
ents. Here device C should be guarded by the guard that is
on the iterator device. Figure 21 shows a similar configu-
ration using a junction instead of an iterator. Here device B
does not need an explicit guard because it is in the body
of the junction, but device C needs a disjunctive guard.

Although this problem could be solved by having guards
of junctions and iterators propagate along paths of escap-
ing data, this is not the best solution. One problem would
be that disjunctive guards would still be needed. Another
problem is that such propagated guards are sometimes
redundant, and often more complicated than needed. A
better and more general solution is motivated by the ex-
ample in Figure 22. Here data escapes from the iterator,
but there are no explicit conditionals. The iterator iterates
the number of times specified by the formula feeding into
it.

For the type of situation illustrated in Figure 22, it can-
not, in general, be determined at compile time how many
times the iterator will iterate. If it iterates zero times, de-
vice B will be skipped because it is in the iterator body,
but device C should not run either. Thus, it needs to be
determined how device C should be guarded. There is no
conditional to generate a guard. To solve this problem, a
new type of guard was created, called a ran-once guard.
A ran-once guard is associated with the iterator, and is
initially set to False. In some cases it may need to be reset
to False in outer sweeps (discussed below). If the iterator
runs, the ran-once guard is set to True. Devices that use
data escaping from the iterator, such as device C in the

example, should be guarded by the iterator’s ran-once
guard.

So we see that ran-once guards are, in general, needed for
iterators. Devices receiving escaping data should inherit
not just the guards from the guards set of the iterator de-
vice, but also from the ran-once guard for the iterator,
conjoined together (that is, they all need to be true). The
key observation is that this conjunction has a value that is
identical to the ran-once guard alone. The ran-once guard
encapsulates the guards on the iterator because the ran-
once guard indicates whether or not the iterator runs, no
matter what the reason. It might not run because the iter-
ator count is zero, but it also might not run because of
guarding the iterator device. Both reasons are captured by
the ran-once guard. Thus, it is sufficient to guard devices
that use escaping data with just the ran-once guard.

Extending this idea to junctions, a ran-once guard for
junctions encapsulates the disjoin of the guards inherited
by the junction. Therefore, devices that use data that
escapes from a junction body can be guarded by the junc-
tion’s ran-once guard, and no explicit disjoined guards are
needed.

Figure 22

Device C should not run if the iterator iterates zero times.

May 1998 • The Hewlett-Packard Journal117Article 13 • 1998 Hewlett Packard Company

Figure 23

Conditionals flowing into and out of a conditional body.

It can now be seen that the complexity of guard sets is
kept relatively low by not propagating guards through
junctions and iterators to their bodies and by only propa-
gating ran-once guards for data that escapes a body.

It should be noted that guards created inside the body of a
junction or iterator can propagate outside the junction or
iterator via escaping data, and guards created outside the
body can propagate into the body if they do not enter
through the body’s junction or iterator device. For exam-
ple, in Figure 23, If/Then/Else1 and device A are both in
the body of the iterator, and If/Then/Else2 and device B are
outside. The guard from If/Then/Else2 propagates into the
iterator body to device A, and the guard from If/Then/Else1
propagates out of the body to device B (as does the guard
from If/Then/Else2). Devices A and B are both guarded by
If/Then/Else1 and If/Then/Else2.

At run time, If/Then/Else guards do not have to be initial-
ized before reaching their If/Then/Else device. This is be-
cause if the If/Then/Else is not reached, it will be because
the If/Then/Else or containing devices are suppressed by
other guards (possibly ran-once guards encapsulating
some of them), and these surrounding guards propagate
along with the If/Then/Else guards. So if the If/Then/Else is

suppressed by guards, these guards will also suppress
descendants of the If/Then/Else that would have used the
If/Then/Else guard (because the guards are conjoined).

Ran-once guards, however, must be initialized to False at
the start of sweeps that use them because if the junction
or iterator controlling a ran-once guard is suppressed by
other guards, those surrounding guards are not propa-
gated along with the ran-once guard. This initialization
maintains the active data rule semantics described in the
section “Iterators” (page 103), where data created in a
sweep is invalidated if the sweep restarts. If this initializa-
tion were not done, a ran-once guard could remain set to
True from an earlier sweep, allowing invalidated data to be
used. For example, in Figure 24, Iterator2 will run in the
first iteration of Iterator1 (when it outputs 1), but it will
not run in the second iteration of Iterator1 (when it out-
puts 2). If the ran-once guard for Iterator2 were not reset
at the start of the second iteration of Iterator1, it would
still be True from the first iteration, and device A would
evaluate in the second iteration of Iterator1, but it should
not. In general, a ran-once guard needs to be initialized in
the innermost sweep (junction or iterator) containing the
junction or iterator it is associated with, and in all sweeps
containing that sweep up to and including the sweep that
also contains all of the consumers of the ran-once guard
(which may be the top level).

An additional point concerning ran-once guards is that
when data escapes from nested iterators or junctions (or
both), only the ran-once guard of the deepest one needs
to be used. Consider the program in Figure 25. The struc-
ture of the schedule for this example is:

� Top-level schedule: Iterator1

� body(Iterator1): Iterator2

Figure 24

The ran-once guard at Iterator2 needs to be set to False at the start of each iteration of Iterator1, or device A would run too often.

May 1998 • The Hewlett-Packard Journal118Article 13 • 1998 Hewlett Packard Company

Figure 25

Data escaping from nested iterators.

� body(Iterator2): If/Then/Else1, Iterator3, B

� body(Iterator3): If/Then/Else2, Iterator4

� body(Iterator4): A

Since B uses data created in Iterator4, B needs to be
guarded by the ran-once guard for Iterator4. It does not,
however, need to also be guarded by the ran-once guard
of Iterator3, even though the data used by B is escaping
from both Iterator4 and Iterator3. The ran-once guard for
Iterator3 is not needed at all in this example. The ran-once
guard for Iterator4 must be initialized to False at the start
of each iteration of Iterator2 and Iterator3. It is set to True
at the start of the first iteration of Iterator4. It is not neces-
sary to set it at the start of each iteration of Iterator4, other
than the first iteration, since its value cannot change dur-
ing Iterator4’s execution. The ran-once guard does not
need to be initialized by Iterator1 or at the top level, be-
cause it is not used at those levels. Also, a guard from
If/Then/Else1 will guard Iterator3 and B, and a guard from
If/Then/Else2 will guard Iterator4.

An extended version of Assign-Guards-to-Device from
Figure 19 appears in Figure 26. This version imple-
ments the methods discussed above.

Guards are used for control of other constructs as well.
One example is error pins. An error output pin can be

placed on many HP VEE devices. If present, errors in the
device are trapped by the system and cause the error pin
to fire instead of the other output pins. If there is no error
the other pins fire and their error pin does not. From the
compiler’s point of view, any device with an error pin is
similar to a two-branch If/Then/Else, except that the noner-
ror branch can be associated with any number of output
pins. Thus, guards are used to implement error outputs in
a similar manner to the implementation of If/Then/Else.
The guards are set by run-time error trapping constructs
compiled with the implementation of the device with the
error pin.

Sometimes guards can be optimized away at compile time.
Ran-once guards are only needed for escaping data, so if
no data escapes they do not have to be set. If data does
escape, but it can be verified at compile time that the in-
nermost escaped sweep runs sufficiently often compared
to all the devices that consume the escaped data, the ran-
once guard can be omitted. For example, if an iterator is
known to run a fixed nonzero number of times, and there
are no guards acting on it (directly or indirectly), then it
does not need to have a ran-once guard for any escaping
data because it will verifiably run at least once. There are
many other situations where various types of guards can
be optimized away, although in practice it can be complex.

May 1998 • The Hewlett-Packard Journal119Article 13 • 1998 Hewlett Packard Company

Figure 26

Guard assignment.

Assign–Guards–to–Device (D) { // D is a device.
 if (D is a junction or iterator)
 // Assign guards to body before D itself so that body won’t
 // inherit guards from D.
 Guard–Assignment(body(D))
 for (each input pin IP of D)
 OP <– output–pin–connected–to(OP)
 Parent <– device–attached–to(OP)
 guards(D) <– guards(D) guards(Parent)
 if (Parent is an If/Then/Else device)
 guards(D) <– guards(D) {guards(OP)}
 if (Parent is in a junction or iterator body that D is not in)
 RanOnce–Guard <–
 ran–once–guard(deepest–junction–or–iterator–in(Parent))
 guards(D) <– guards(D) {RanOnce–Guard}
 record <Parent,D,RanOnce–Guard> for RanOnce initialization
}

Type Annotation

Type annotation is a phase of the prototype HP VEE com-
piler in which every pin of every device in an HP VEE
program is annotated with a description of the types of
data it will handle at run time. The type annotations can
often be used to generate more efficient run-time code.
Some run-time checks can be eliminated and composite
data objects can be replaced by hardware supported rep-
resentations (for example, real numbers). The type de-
scriptions are conservative approximations in that they
err on the safe side. For example, we may obtain a con-
servative approximation that some data input pin is al-
ways a real or integer scalar, when in fact it could only be
a real scalar.

Recall from the discussion of HP VEE data types that data
objects in HP VEE are typed, but pins and connections
are not typed. In HP VEE 3.2 the data objects have fields
that specify the type information. Also, recall that most
HP VEE devices will handle many different types of data
as input. Every time a device is executed by the HP VEE
3.2 interpreter, the following steps typically occur:

1. The type of each input value is ascertained and com-
pared against the pin’s required type. A conversion
may need to be performed, possibly allocating and
initializing a new data object.

2. A check is made to determine whether input values
need to be promoted to a common type. Again, input
values may need to be converted.

3. The data inputs, or their conversions, are used to
perform the computation.

4. The final result is injected into a data object, along
with type information.

When executing a simple numerical device, these sorts of
extraction, conversion, and injection operations on data
objects can account for a substantial percentage of the
device’s execution time. With type annotation, unneces-
sary extraction, conversion and injection operations can
often be eliminated. The result can be very efficient nu-
merical code that uses standard hardware-supported data
representations such as real and integer.

The type descriptions generated during type annotation
are sets of ordered pairs. Each pair specifies a class of
values and a class of shapes, as shown in Table I. A type
description represents a disjunction of pairs, as shown in
Table II. Type descriptions are normalized so that the
number of pairs is minimized. Normalizing a type descrip-
tion does not change its meaning, as shown in Table III.

May 1998 • The Hewlett-Packard Journal120Article 13 • 1998 Hewlett Packard Company

Table I
Type Descriptions

Pair Meaning

<real, scalar> Data is a real scalar

<real, array> Data is a real array of some dimension

<real, array-1d> Data is a real one-dimensional array

<real, any> Data is a real array or real scalar

<real, any> Data in anything

<any, array> Data is an array, but type is unknown

Table II
Disjunction of Pairs in Type Descriptions

Type Description Meaning

{<real, scalar>, <integer, scalar>} Data is a real or integer scalar

{<real, scalar>} Data is a real scalar

{<real, scalar>, <nil, any>} Data is a real scalar or nil

Table III
Normalization of Type Descriptions

Type Description Normalized Type Description

{<real, scalar>, <real, any>} {<real, any>}

{<real, scalar>, <real, array>} {<real, any>}

{<real, scalar>, <integer, any>} {<real, scalar>, <integer, any>}

The type descriptions are ordered by a�b if the set of
values described by a is a proper subset of the values de-
scribed by b. The bottom element of the ordering is {} and
the top element of the ordering is {<any, any>}.

Determining the type description for every pin of every
device in an HP VEE program can be viewed as executing
the HP VEE program over the abstract domain of type
descriptions rather than over the standard domain of val-
ues. In this view, devices take type descriptions as input
and compute appropriate type descriptions as outputs.
The resulting type descriptions are propagated to descen-
dants for further annotation. This notion of computing
with abstract values is sometimes called abstract inter-

pretation. An annotated program is shown in Figure 27.
In this figure, the addition device takes {<integer, scalar>}
and {<real, scalar>} and produces {<real, scalar>} as the

result. The reason for this is that the standard addition
device promotes its inputs to a common type before com-
puting the result, and the abstract addition device reflects
this.

Figure 27

Example of type annotation.

May 1998 • The Hewlett-Packard Journal121Article 13 • 1998 Hewlett Packard Company

Since truth values cannot be determined from type de-
scriptions, when performing type annotation we simply
ignore all guard and control values and propagate type
descriptions to all output pins.

Type annotation is performed by traversing the scheduler
output and determining type annotations for every device
that is encountered. Because of feedback loops, type an-
notations can change on input pins of devices that have
already been visited in the traversal. Thus, the type anno-
tator may need to traverse the scheduler output multiple
times until all type annotations have stabilized. The sub-
sequent traversals are very efficient because only devices
that need to have their output pin annotations updated
are redone. Type annotations do eventually stabilize,
because when a type description, d, is changed, it is re-
placed by a type description that is strictly greater than d
in the ordering. Since there are only a finite number of
type descriptions, only a finite number of changes are
possible.

Code Generation

The internal structure that results from the sequence of
graph transformations, scheduling, guarding, and type
annotation, is similar in form to an annotated parse tree
that might be produced by a conventional compiler. To
complete the compilation, target code is produced from
this structure. If appropriate libraries of HP VEE built-in
routines exist, most of the compiled internal structure can
be straightforwardly mapped to any conventional program-
ming language, such as C. The mapping may be difficult
for error trapping (for error pins) and the implementation
of the Fork construct. Fork should map to a construct (or
constructs) to implement thread creation and destruction.
Error trapping is built-in or can be implemented in most
programming systems, and threads have become reason-
ably common. If the generated code is interpreted, thread-
ing is easy to implement.

To generate code for different target languages, only the
code generator needs to be modified. This is a relatively
small part of the compiler. Prototype code generators for
C, and for an interpreted byte-code, have been imple-
mented. C generators have been written to produce stand-
alone programs for subsets of HP VEE and to produce C

code to be compiled and dynamically loaded into a run-
ning HP VEE 3.2 session. A byte-code generator was writ-
ten to produce a stream of byte code to a file or in-
memory array. A simple interpreter running inside HP
VEE can run the byte code. An advantage of the byte-code
generator over the C code generator is that an external
compiler is not needed. Another advantage of interpreta-
tion is that program development features such as single
stepping and tracing are easier to implement, especially in
the context of running programs inside the HP VEE devel-
opment system.

Conclusion

An overview of the major components of a compiler for
HP VEE 3.2 has been presented. Although many details
were omitted, the fundamental algorithms for a large
class of programs have been explained. The five compiler
components are graph transformation, device scheduling,
guard assignment, type annotation, and code generation.
These components combine to implement the control
semantics explicitly or implicitly specified in an HP VEE
program. These semantics were also described. A com-
piler based on the prototype compiler has now become an
integral part of HP VEE 4.0.

Acknowledgments

A compiler for HP VEE was originally suggested to us by
Randy Coverstone, our department manager at Hewlett-
Packard Laboratories. Wes Higaki and Bill Shreve also
provided valuable management support. Special mention
goes to the following Measurement Systems Division engi-
neers from the HP VEE product team: Jim Bachman, Ken
Colasuonno, John Dumais, and Susan Wolber. These four
had the difficult task of understanding our prototype and
making it into a product. The result of their efforts is the
compiler in HP VEE 4.0. Bill Hunt and Randy Bailey were
engineers on the Measurement Systems Division HP VEE
team who worked with us early in the project. Bill helped
us integrate early versions of the compiler with HP VEE,
and supplied much other help as well. John Bidwell, Bill
Heinzman, and Chuck Heller also provided encourage-
ment and support.

May 1998 • The Hewlett-Packard Journal122Article 13 • 1998 Hewlett Packard Company

References

1. R. Helsel, Cutting Your Test Development Time with HP

VEE: An Iconic Programming Language, P T R Prentice Hall,
Englewood Cliffs, NJ, 1994.

2. Hewlett-Packard Journal, Vol. 43, no. 5, October 1992,
pp. 72-88.

3. D. E. Knuth, The Art of Computer Programming, Vol. 1/Funda-
mental Algorithms, Addison-Wesley, 1973.

http://www.hp.com/go/HPVEE
http://www.hp.com/hpj/journal.html

	bigcover_0598.jpg
	may98a1.pdf
	may98a2.pdf
	may98a3.pdf
	may98a4.pdf
	may98a5.pdf
	may98a6.pdf
	may98a7.pdf
	may98a7a.pdf
	may98a7b.pdf
	may98a8.pdf
	may98a9.pdf
	may98a10.pdf
	may98a11.pdf
	may98a12.pdf
	may98a13.pdf
	Acr6A.tmp
	Local Disk
	HP Journal - Table of Contents - May 1998 Volume 49 Issue 2

